Autologous bone marrow-derived mesenchymal stem cells (BMSCs) remains as one of the most effective source cells for tissue-engineered bones, however, its use is limited by the requirement of long-term cultivation in vitro and high expense. Recent researches have demonstrated that SDF-1α plays an important role in the migration process of BMSCs. Therefore, this study aims to design a novel tissue-engineered bone that can automatically capture autologous BMSCs in vivo, and to evaluate its effect on repairing bone defects. Xenogenous rat BMSCs transected with SDF-1α gene are used as source cells and transplanted onto microlized deproteinized bone matrix to form a novel 3-D composite bone substitute, using a rotary cell culture system. Through the signal pathway of SDF-1α/CXCR4, this new bone substitute can automatically recruit the autologous BMSCs in the peripheral circulation by the over-expression of SDF-1α, and thus efficiently promoting the process of bone regeneration after transplanted into bone defects. And then the SDF-1α gene will be equipped with hypoxia-induced promoter elements as a switch, by which the cells can secret high concentration of SDF-1α in low-oxygen conditions and shut it up when in normal-oxygen conditions. This site-directed recruitment of autologous BMSCs in vivo to accelerate bone healing by timely over-expression of SDF-1α will provide a beneficial way for bone tissue engineering, and greatly contribute to the eventual design of an clinically usable tissue-engineered bone.
自体骨髓间充质干细胞(BMSCs)是骨再生关键参与者,也是组织工程骨最有效的种子细胞之一,但由于其体外分离培养时间长,临床运用一直受限。本项目设想构建一种能在体内主动捕获BMSCs参与骨再生的组织工程骨,并观察它对骨缺损的修复作用。将转染基质细胞衍生因子SDF-1α基因的大鼠异体BMSCs作为种子细胞,借助三维旋转培养种植于脱蛋白骨微载体上形成复合型骨替代物,使之移植后能快速血管化以保证种子细胞成活并分泌SDF-1α,而近期研究已证实SDF-1α具有趋化BMSCs作用,因此可以通过SDF-1α/CXCR4信号轴介导主动趋化外周血中的BMSCs参与骨再生。在此基础上将低氧反应元件导入SDF-1α基因上游作为调控开关,使其在低氧条件下高表达,而在恢复常氧后基因过表达及时终止。这种利用SDF-1α适时适度表达来诱导体内BMSCs定向迁移和成骨的策略,将为构建临床可用的组织工程骨提供新的理论依据。
自体骨髓间充质干细胞(BMSCs)是骨再生关键参与者,也是组织工程骨最有效的种子细胞之一,但由于其体外分离培养时间长,临床运用一直受限。本项目设想构建一种能在体内主动捕获BMSCs参与骨再生的组织工程骨,并观察它对骨缺损的修复作用。.实验内容及结果:.1.成功通过PCR技术构建 pBOBi-9HRE-SDF-1α质粒载体,转染兔BMSCs后能够在体外低氧环境下实现高表达SDF-1α,常用环境下则正常表达SDF-1α。.2.筛选并比较分析骨质来源MSCs和骨髓来源MSCs的增殖和成骨分化能力,发现骨质和骨髓混合培养的MSCs增殖能力稳定,在成骨诱导分化能力上更有优势,更适合作为组织工程骨的种子细胞。.3.利用静电纺丝技术将PLGA联合万古霉素作为涂层附着在脱蛋白松质骨支架表面,通过体外抑菌和体内感染性骨缺损移植实验证实,该新型抗感染骨支架可以在体内外缓慢释放万古霉素,28天内维持有效抑菌浓度,是较理想的组织工程骨支架材料。.4.利用3D旋转培养技术将脱蛋白松质骨支架和转染9HRE-SDF-1α的BMSCs进行培养,成功构建可控式高表达SDF-1α的组织工程骨,并通过兔胫骨干骨缺损移植实验证实,该新型组织工程骨可以有效修复大段骨缺损。.5.通过局部注射SDF-1α给药的方式,证实SDF-1α联合支架材料Integra可以有效修复全层皮肤缺损创面,改善创面修复效果。.本项目创新性提出利用可调控的SDF-1α过表达来诱导自体内源性BMSCs定向迁移参与组织工程骨移植修复骨缺损的策略,以解决种子细胞分离扩增缓慢和体内移植后难以成活的难题,经过实验研究证实有效,为将来的组织工程骨研究提供了非常好的思路和方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
物联网中区块链技术的应用与挑战
梯次构建大块血管化组织工程骨及其修复骨缺损的实验研究
组织工程骨膜的构建及其膜内化骨修复骨缺损的实验研究
新型复合支架体外构建血管化组织工程骨及其用于大段骨组织缺损修复研究
Si-CaP/自体微小颗粒骨/BMSCs组织工程骨的体外构建和体内研究