Electric-double-layer (EDL) effect due to ionic aggregation at the interface provides a powerful technical method for modulation of the electrical properties of semiconductors, at the same time, it also bring novel opportunities for new-concept device fabrication. Recent research results indicated that EDL transistors had great application potential in artificial synapses and neuromorphic electronics with ultra-low energy consumption. This project will mainly focus on the investigation of amorphous oxide-based electric-double-layer transistors with multi-gate structures and their applications in neuromorphic systems. Firstly oxide-based EDL transistors gated by solid-state electrolytes films, such as phosphorus doped SiO2 nanogranular, chitosan and graphene oxide with multiple lateral gates will be fabricated. After EDL modulation and transistor electrica performance characterizations, the electrostatic field-effect modulation and electrochemical doping modulation of IGZO、IZO channel layers by electric-double-layer gate capacitors in different gate-voltage scanning ranges will be investigated especially. Artificial synaptic properties, such as spike-timing dependent plasticity, paired-pluse facilitation, and high-frequency filtering of these artificial synapses will also be investigated in detail. At last, summation modulation of multiple spiking inputs, noise facilitation, classical conditioning, and neuronal arithmetic will be emulated in such oxide-based artificial synaptic devices with multiple lateral gates. The above investigations will provide a solid physical and device foundation for neuromorphic electronics.
离子界面聚集导致的双电层效应为半导体电学特性的调控提供了一种强大技术手段,同时也为新概念器件的研制带来了新的机遇。最近研究结果表明,双电层晶体管在超低能耗人造突触和神经形态系统领域具有重大应用前景。本项目主要聚焦在一种具有多栅结构的非晶氧化物双电层晶体管及其在神经形态系统中的应用研究。本项目将首先研制具有巨大栅电容的磷掺杂SiO2纳米颗粒膜、壳聚糖和氧化石墨烯固态电解质为栅介质的多侧栅氧化物双电层晶体管。在双电层物性调控和晶体管电学特性表征之后,项目将重点研究双电层栅电容在不同栅压扫描范围内对IGZO、IZO沟道薄膜的静电场效应和电化学掺杂调控机理。本项目还将详细研究突触晶体管的尖峰时间依赖的可塑性、双脉冲易化和高通滤波等特性。最后,本项目还将在多侧栅氧化物人造突触器件中实现多尖峰信息的整合调控、噪声易化、条件反射和神经元算法的仿生。上述研究将为神经形态电子学奠定坚实的物理和器件基础。
离子界面聚集导致的双电层效应为半导体电学特性的调控提供了一种强大技术手段,同时也为新概念器件的研制带来了新的机遇。最近研究结果表明,双电层晶体管在超低能耗人造突触和神经形态系统领域具有重大应用前景。在该项目资助下,我们主要关注非晶氧化物半导体/固态电解质界面的质子双电层调控及其多端口神经形态晶体管应用。我们研制的非晶氧化物双电层晶体管的工作电压小于2V,场效应迁移率为27.2cm2/Vs,亚阈值斜率~78mV/dec,电流开关比为1.2×10^7。成功阐述了器件低电压下的双电层调控和大栅压下的质子电化学掺杂机制。实现了尖峰时间依赖的可塑性(STDP)、双脉冲易化、高通滤波等生物突触特性。成功研制了多种具有多输入端口的氧化物基人造神经元,并实现了超低功耗多脉冲信息的非线性整合和神经元算法等特性的仿生。单脉冲功耗低于1.0pJ/spike。有关研究结果将为神经形态电子学奠定坚实的物理和器件基础。在本项目资助下,本人累计以通讯作者身份发表了包括1篇Advanced Materials, 11篇IEEE EDL在内的20篇SCI论文(其中15篇标注资助)。授权国家发明专利一件。2017年参加了MRS春季会议,并做神经形态器件专题主持和邀请报告。2020年10月在宁波组织了一次国内神经形态器件(人造突触器件学术论坛)
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
氧化物半导体纳米线双电层静电调控及其器件应用
基于双极性沟道的双电层晶体管及其神经形态应用研究
双栅非晶氧化物薄膜晶体管研究
原位氧化高k栅绝缘层及其在非晶氧化物薄膜晶体管中的应用