The project is committed to the development of a new method to elucidate mechanically, thermally and photochemically induced phenomena in molecular devices. The proposed development will be undertaken within the framework of the next generation quantum topological theory consisting of my progress in QTAIM/quantum stress tensor and Ehrenfest Force atoms-in-molecules based partitioning schemes. Next generation quantum topological theory will partner existing theory methods and will use their resultant total electronic charge density distributions as input and is suitable for many types of chemical, physical and excited state phenomena; photo-isomerization, excited state intra-molecular proton transfer (ESIPT) and the related avoided crossings and conical intersections of potential energy surfaces. The adaptations of the bonding topology to the functioning of the mechanical, thermal and light driven devices can reveal chemical patterns beyond the scope of the Woodward Hoffman rules. The subsequent topological transformation can be modulated by purely synthetic means by introducing substituents, heteroatoms, modifying the backbone structures and the environmental factors. As deemed necessary, predictions made on the basis of the bonding topology analysis will be verified by non-adiabatic molecular dynamics simulations of the excited state reactions of the modified species. In particular, this will enable the performance of light driven molecular devices to be optimized in terms of the quantum yield and/or selectivity of the photoreaction. This can be achieved by applying my next generation quantum topological theory in combination with the advanced methods for describing the molecular excited states and the relevant potential energy surfaces. The electronic structure of the excited state species will be analyzed along the non-adiabatic molecular dynamics trajectories, which will also provide information on the quantum yields of excited state reactions..I hope that the developments of next generation quantum topological theory can be implemented to become a new tool to determine and modulate the reactive pathways of mechanically, thermally and light driven molecular devices.
本项目致力于发展一种新方法用于解释分子器件中的力学、热学和光化学诱导现象。工作将在新的量子拓扑理论框架下展开,其中包括申请人在分子中的原子量子理论QTAIM,量子化学压力张量和基于QTAIM的埃伦费斯特力分区等方法上已取得的进展。新量子拓扑理论将结合现有理论方法并将其生成的电荷密度分布作为输入信息,该理论适用于多种化学、物理和激发态现象;光致异构化、ESIPT和相关势能面的反交叉及圆锥交叉。成键拓扑学适用于解释伍德沃德霍夫曼规则外的化学现象,随后的拓扑转化可通过纯合成方法例如引入取代基、杂原子和修改主链结构和环境因素等进行调整。基于成键拓扑分析做出的预测能通过对改性物种的激发态反应的非绝热分子动力学模拟来验证。这将使光驱动分子器件在光反应的量子产率和/或选择性等方面的性能得到优化。对激发态物质电子结构的分析可沿非绝热分子动力学轨迹,还能提供激发态反应的量子产率相关信息。
研究项目21673071通过彻底重新考虑手性,开辟了新的研究领域,例如立体化学,主要按照计划:(A)作为开关的开环反应。利用下一代QTAIM (NG-QTAIM)的定向特性,我们确定了开环反应、电机和开关的电子重组与实验数据一致,包括键断裂和形成的同步性,使竞争开环反应被成功地考虑。(B)取代光驱动的芴分子马达。这一领域的研究在QTAIM和NG-QTAIM理论发展的基础上,导致了对控制分子马达转速因素的认识。对分子马达激发态动力学特性的解释表明,在设计马达分子时,应注意马达叶片之间的相互作用,以防止马达失速。这些分子内相互作用的偶联程度或粘性由QTAIM决定,可以通过改变添加到手性中心的原子来控制。最后,人们对量子效率的关注较少,因为后来人们发现量子效率依赖于宏观效应,而这在本研究的范围内是无法实现的。然而,我们仍然可以成功地完成这一部分的项目,因为除了确定存在的粘性相互作用,减慢电机,发现了新的方法来评估轴向键旋转的纯度,为旋转分子电机的设计。此外,这部分的项目已经导致了对手性的新认识的形成,请看未来的工作在本文件的结尾。(C)二芳基乙烯(DTE)开关的光反应性。我们成功地确定了影响开关光反应效率的拓扑-机械因素。由于NG-QTAIM的灵敏度,我们将定向电场应用在比通常使用的电场低得多的电场上,从而产生了未来使用激光的想法,从而影响开关的行为。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
近 40 年米兰绿洲农用地变化及其生态承载力研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
基于细粒度词表示的命名实体识别研究
基于FTA-BN模型的页岩气井口装置失效概率分析
分子尺度量子器件的理论研究
拓扑半金属量子输运理论
量子霍耳效应体系拓扑序和拓扑量子数的理论研究
拓扑量子计算的数学理论