Control of hypersonic flight vehicles is a hot research topic in the dynamics and control community in recent years and developing hypersonic flight vehicles is a strategic direction of the aeronautics and astronautics department of China. For hypersonic flight vehicles, hypersonic maneuvering is a very important fight phase which is quite difficult to analyze and control. Based on the analysis of the foreign failure hypersonic vehicles, this project will study the modeling and control problems of hypersonic maneuvering flight dynamics for a large class of maneuvering motions, e.g., fast descending of high angles of attack, large-amplitude roll motions, and fast changing of both the height and speed. We will investigate the coupling problems of the multiple attitude channels, and the coupling of the attitude and trajectories induced by the supersonic maneuvering motions. We will establish dynamical models to precisely describe the characteristics of the aforementioned couplings, identify the effects of the couplings on the dynamics, give the interacting mechanisms of the attitude and the motion of center of mass during hypersonic flights, and establish the decoupled and coupled control methods for the multiple channels of the attitude dynamics and the separated and integrated design theory and methods of the attitude and the trajectory. Furthermore, based on a class of hypersonic gliding vehicles, we will present control methods for reentry maneuvering, gliding maneuvering, and fast descending maneuvering, and give robust and adaptive control laws in the presence of large-range varying parameters and model uncertainties. Finally, the feasibility and adaptability of the proposed methods will be verified by numerical simulations and experiments.
高超声速飞行器控制是近年来国内外动力学与控制领域研究的热点,研制相关飞行器是我国航空航天部门的重大战略方向,其中高超声速机动飞行又是特别重要而又难以分析和控制的飞行阶段。本项目拟借鉴国外飞行器失败经验,针对一大类机动运动,如大攻角快速下压、大滚转、高度与速度的快速变化等,深入开展高速机动飞行动力学建模与控制课题研究。研究由于机动运动带来的姿态多通道耦合、姿态与轨迹耦合问题,建立能准确反映耦合特征的动力学模型,明确耦合因素对动力学特征的影响,给出高速机动飞行时姿态与质心运动的交互作用机理,建立姿态多通道解耦与耦合动力学分析与控制理论、姿态与轨迹分离设计和一体化设计理论与方法。在此基础上,结合一类高超声速滑翔飞行器,给出再入机动、滑翔机动、快速下压机动下的动力学分析与优化控制方法,以及高速机动飞行参数大范围变化与模型不确定性状态下的鲁棒自适应控制方法,并通过仿真实验验证方法的可行性和适应性。
针对一大类机动运动,给出了姿态多通道耦合、姿态与轨迹耦合问题动力学分析方法,建立了能准确反映耦合特征的动力学模型,给出了耦合因素对动力学特征的影响规律,以及高速机动飞行时姿态与质心运动的交互作用机理,建立姿态了多通道解耦与耦合动力学分析与控制理论、姿态与轨迹分离设计和一体化自主控制设计理论。在此基础上,结合一类高超声速滑翔飞行器,给出了再入机动、滑翔机动、快速下压机动下的动力学建模、在线弹道优化与不确定性条件下鲁棒自适应制导控制方法,以及分散解耦控制、主动流动控制、非奇异有限时间滑模、分布式协同控制等方法,并通过仿真实验验证了方法的可行性和适应性。项目成果在相关领域一流国际期刊发表SCI 论文76篇,成果获国家自然科学奖二等奖,并在国家重大专项中得到应用。项目组成员入选青年长江学者奖励计划。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
敏感性水利工程社会稳定风险演化SD模型
近空间高超声速飞行器的建模与智能自主控制
面向机动飞行的变进气道高超声速飞行器协调控制策略
基于自主优化模糊动态特征建模的高超声速飞行器系统分析与控制
高超声速飞行器建模与控制的理论与方法