As a novel isolator, the multiple friction pendulum (MFP) has adaptive stiffness and damping, and can meet multiple seismic performance targets simultaneously. Compared with traditional bearing systems, the MFP has advantages in durability, load and displacement capacities, and self-centering capacities, etc. However, the current investigation and application of MFP are relatively few, and are only limited in low-rise to mid-rise buildings and bridges. In order to solve the key problems in seismic isolation of high-rise buildings with MFPs, this study will start from the investigation on the mechanical behaviors of isolated high-rise buildings with adaptive MFPs, and the simplified and complicated analytical models of isolation layer and upper structures will be established. Thereafter, the seismic and wind-resistant performance of the isolated structure will be studied, and emphases are laid on the influence of high-frequency components, high-order vibration modes, torsion and overturn control, etc. Based on these efforts, the performance-based design method and procedure of isolated high-rise buildings with adaptive MFPs will be put forwarded, and basic performance tests, shake table tests and real-time hybrid simulations will be made to calibrate the analytical model and design method. To this end, regarding the aforementioned design method, the mathematical model and algorithms of design optimization will be proposed, and the optimal design is to be realized through rational selection of isolation parameters.
作为一种新型隔震装置,多重摩擦摆具有刚度、阻尼的自适应调制能力,可同时实现多重抗震性能目标,并在耐久性、承载力、变形和复位能力等方面较传统隔震支座有优势。然而,目前多重摩擦摆的研究和应用还相对较少,且仅限于中低层建筑或桥梁。为解决多重摩擦摆在高层建筑隔震中的若干基础性问题,本项目拟从自适应多重摆高层隔震建筑的力学行为分析入手,研究隔震层和上部结构的简化及精细化分析模型。此后,研究多重摆高层隔震建筑的抗震、抗风性能,并重点探讨其高频响应、高阶振型影响、扭转效应及倾覆控制等问题。在此基础上,建立自适应多重摆的高层建筑性能化隔震设计方法及流程,并通过支座的基本性能试验、振动台和实时混合模拟试验等手段对分析模型和设计方法加以校验。最终,针对上述设计方法,提出优化设计的数学模型及适用算法,通过隔震参数的合理选择实现最优化设计。
作为一种新型隔震装置,多重摩擦摆具有刚度、阻尼的自适应调制能力,可同时实现多重抗震性能目标,并在耐久性、承载力、变形和复位能力等方面较传统隔震支座有优势。然而,目前多重摩擦摆的研究和应用还相对较少,且仅限于中低层建筑或桥梁。为解决多重摩擦摆在高层建筑隔震中的若干基础性问题,本项目从自适应多重摆高层隔震建筑的力学行为分析入手,研究隔震层和上部结构的简化及精细化分析模型。此后,研究多重摆高层隔震建筑的抗震、抗风性能以及控制方法。在此基础上,建立自适应多重摆的高层建筑性能化隔震设计方法及流程,并通过支座的基本性能试验、振动台等手段对分析模型和设计方法加以校验。最终,针对上述设计方法,提出优化设计的数学模型及适用算法,通过隔震参数的合理选择实现最优化设计,并对结构的倒塌概率进行了评估。本项目验证了多重摩擦摆在高层建筑隔震中的可行性与优越性,实现了多目标下隔震支座参数的最优化设计,为改善高层建筑的抗震韧性提供了思路和方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
滚动直线导轨副静刚度试验装置设计
一种改进的多目标正余弦优化算法
基于混合优化方法的大口径主镜设计
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
基于可调摩擦摆支座的智能隔震体系研究
长周期地震下高层建筑中多重TMD楼板减隔震体系的减震机理和优化设计
基于摩擦摆支座性能劣化和多级缓冲限位的近海隔震结构抗震性能研究
滑动摩擦类隔震支座的性能、模型和设计方法研究