Under the high-speed and interrupted cutting impact, the milling cutter wear induced by intensively vibration of the part of particles in the tribological system of high energy efficiency milling cutter , has been a bottleneck problem for drastically improving high-speed milling energy efficiency. The essence of the nonlinear friction wear of the high energy efficiency milling cutter is yet to be revealed. .The evolution of the high energy efficiency milling cutter friction on different space-time scales has complex interaction. Multi-scale correlation is a key for studying the friction damage of high energy efficiency milling cutter. At present, for researching the wear mechanism and tribology design of the high energy efficiency milling cutter, it is a new direction that the essential relation between macro and mesoscopic structure of the friction and wear of the milling cutter is explored. .Based on the existing research of the design method of the high energy efficient milling cutter, this application intends in studying the nonlinear friction dynamic characteristics and the transient energy consumption on the tool-workpiece contact surface. The formation and evolution mechanism of the non-equilibrium, non-steady friction and wear are revealed. The nonlinear friction dynamics behavior, the formation mechanism of the nonlinear friction dynamics wear of the milling cutter, and the effect of the multi-scale competition and coupling of the friction and wear of the high energy efficiency milling cutter are mainly studied. The cause of the formation and evolution of the nonlinear friction dynamic wear of the milling cutter and the model control parameters are explored. Based on the nonlinear friction dynamics, the intrinsic or extrinsic wear model of milling cutter is established. The multi-scale collaborative design method of milling cutter for reducing friction and resisting wear is proposed as the scientific basis and design method for developing a new high energy efficiency milling cutter.
高速、断续切削载荷作用下,高能效铣刀摩擦学系统部分质点剧烈振动导致的铣刀磨损,已成为制约其切削能效大幅度提高的瓶颈,铣刀非线性摩擦动力学磨损的科学实质有待揭示。.高能效铣刀摩擦磨损在不同时空尺度上的演变过程存在复杂交互作用,多尺度关联是研究高能效铣刀非线性摩擦动力学磨损机理的关键。目前,探索铣刀摩擦磨损宏介观构性的本质联系,是高能效铣刀磨损机理和摩擦学设计研究新方向。.本申请拟在已有的高能效铣刀设计方法基础上,研究铣刀非线性摩擦动力学特性与刀工界面瞬态能耗多变性,揭示铣刀非平衡、非稳态摩擦磨损形成和演变机理;重点研究铣刀非线性摩擦动力学行为与磨损形成机理、高能效铣刀摩擦磨损的多尺度竞争与耦合效应,探明铣刀非线性摩擦动力学磨损形成、演变的动因和模型控制参数,建立铣刀非线性摩擦动力学磨损本征/非本征模型,提出铣刀减摩抗磨多尺度协同设计方法,为研制新型高能效铣刀提供科学依据和设计方法。
利用铣刀切削过程中的瞬时能效模型,阐明了铣刀瞬时切削能量传递与转换动态关系的关键控制变量,揭示出刀工界面特征变量对摩擦力、摩擦系数、能量耗散和磨损强度的影响特性;建立了刀工界面几何非线性摩擦动力学模型,获得了瞬时铣刀非线性摩擦状态转迁判据,阐明了刀工摩擦界面锯齿状摩擦力和阶跃滑移速度形成机理。.建立了刀工摩擦副的状态方程和输出方程,获得了长时程切削中刀工界面的摩擦磨损行为时频特性,揭示出刀工摩擦副结构与摩擦磨损变量的非平衡、非稳态特性,获得了铣刀摩擦磨损变量相轨迹演化规律,阐明了高能效铣刀磨损过程中刀工界面非线性摩擦动力学行为由发散、收敛,再到发散的演变过程及其模型控制变量。.利用铣刀后刀面瞬时摩擦损伤跨尺度模型,获得了摩擦载荷作用下刀齿后刀面在不同时间和空间尺度上的结构变形和破坏特征,阐明了铣刀宏介观非线性摩擦动力学行为特性,及其对摩擦界面原子成键能力、磨损成核和磨损跨尺度演变的控制性影响机制。.建立了高能效铣刀宏介观非线性摩擦动力学的耦合匹配关系模型,揭示出铣刀磨损形成的动因与模型控制参数,提出刀工界面摩擦损伤的跨尺度敏感性和摩擦损伤成核与扩展速率过程及其特征时间的识别方法,阐明了高能效铣刀非线性摩擦动力学行为发散、收敛、再发散过程与磨损群体成核、群体放大过程的跨尺度竞争与耦合效应,建立了铣刀摩擦磨损本征/非本征模型。.利用铣刀摩擦磨损动力学函数,揭示出长时程切削中铣刀摩擦学系统结构、特征变量的跟随性、不可恢复性和非平衡状态转迁特性,阐明了高能效铣刀非线性摩擦动力学磨损多尺度协同演变规律,形成了高能效铣刀减摩抗磨多尺度协同设计方法。.本项目重点解决了高能效铣刀摩擦学系统非平衡状态转迁的不确定性,铣刀磨损成核、扩展速率过程的模糊性和多尺度耦合、竞争效应的多样性问题,揭示出高能效铣刀非线性摩擦动力学状态变迁的驱动机制与多尺度协同演变机理,为高能效切削刀具及工艺技术研发提供了依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
钢筋混凝土带翼缘剪力墙破坏机理研究
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
地震作用下岩羊村滑坡稳定性与失稳机制研究
采用黏弹性人工边界时显式算法稳定性条件
硫化矿微生物浸矿机理及动力学模型研究进展
高能效铣刀波动力学损伤机理及其多尺度协同设计方法
多场耦合下NiTi合金摩擦磨损特性的多尺度分析及跨尺度关联
胎/路多场耦合作用下沥青路面摩擦磨损机理研究
高能制动粉末冶金摩擦材料磨损图研究