Smart materials such as piezoelectric and magnetostrictive actuators possess the properties of high response, simple structure, high reliability, high accuracy and low noise, leading to widely applicable prospective in the high-precision cutting and processing systems. However, the inherent hysteresis nonlinearities in smart materials and the time delay in the high-precision cutting and processing systems seriously affect the precision of the control scheme. This project aims to do the research on modeling and control for high-precision cutting and processing systems. The details are as follows: 1) For the high-precision cutting and processing systems including the hysteresis nonlinearities and time delays, the robust adaptive output control and adaptive estimated inverse control will be designed and analyzed to realize the precise position control of the cutting tools and chatting mitigation.2) For the dynamic characteristic of the hysteresis in piezoelectric and magnetostrictive materials, the dynamic hysteresis models will be constructed where the correlation of the frequency and the two dimensional correlation of pressure-frequency could be truly reflected. 3) the uniformed model which is composed of the hysteresis nonlinearities and the high-precision cutting and processing systems will be constructed. This project can breakthrough the technical bottleneck of the active motion control precision and has magnificently theoretical and applicable meaning for the application of the smart material based actuator in the high-precision manufacturing field.
基于压电陶瓷及超磁致伸缩等智能材料的驱动器具有响应快速、结构简单、高可靠性、高精度及低噪声等优点,在高精切削/加工系统中具有广泛的应用前景。但智能材料固有的动态回滞特性与高精切削/加工系统中的时滞状态严重影响了系统的控制精度。本项目旨在研究基于智能材料驱动器的高精切削/加工系统的建模与控制问题。具体包括:1)针对同时存在回滞非线性与时滞现象的高精切削/加工控制系统,设计鲁棒自适应输出反馈控制与自适应估计逆控制两种控制策略,并进行比较、分析,实现切刀的精确位置控制及颤振抑制。2)针对压电及超磁致伸缩材料中回滞的动态特性,分别建立能反映其频率相关性及应力-频率二维相关性的动态回滞模型。3)构建动态回滞非线性与高精切削/加工动力学系统相串级耦合的统一模型。本项目可突破目前高精切削/加工系统中主动运动控制精度的技术瓶颈,对智能材料驱动器在高精制造领域的应用和推广具有极大的理论意义与应用价值。
压电陶瓷及超磁致伸缩等刚性智能材料的驱动器具有微米级行程、响应快速、结构简单、高可靠性、高精度及低噪声等优点,在高精加工系统中具有广泛应用。但智能材料固有的动态回滞特性与加工过程中的时滞状态严重影响了系统的控制精度。为此,本项目解决了基于智能材料驱动器的高精切削/加工系统的建模与运动控制问题。具体为:1)针对压电及超磁致伸缩材料中回滞的动态特性,建立了降阶整合Preasach非对称回滞模型。2)构建了动态回滞非线性与高精切削/加工动力学系统相串级耦合的统一模型 。3)针对同时存在回滞非线性与时滞现象的高精切削/加工控制系统,设计了几类鲁棒自适应输出反馈控制与自适应估计逆控制两种控制策略,实现了刀具精确位置控制。本项目实现了智能材料驱动器的纳米级控制精度,对智能材料驱动器在高精制造领域的应用和推广具有极大的理论意义与应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
基于智能材料的时变切削系统稳定性在线控制技术的研究
复杂薄壁件高效高精多轴加工的几何建模与工艺优化
陶瓷材料切削,超精切削,磨削机理
高速干切削(准干切削)加工过程智能监控