Improving the energy density level of energetic compounds is the inevitable requirement for achieving the goal of long-range and intensive strike. Designing and synthesizing high performance ring skeleton is an effective approach to enhance energy density level. Nitrogen rich aromatic oxides are ideal energetic compound skeleton units. The fused ring structure formed by their parallel connection is more compact than the traditional chain structure skeleton, with higher enthalpy of formation and better oxygen balance. This project chose the most nitrogen and oxygen rich aromatic oxides like 1,2,3,4-tetrazine-1,3-dioxide, furoxan and 1,2,3-triazole-1,3-oxide as the basis for the fused nitrogen-rich polycyclic aromatic N-oxides design with high energy level. The structures were designed to be linked by carbon-carbon bonds. Based on the deep study of the transformation rules between different ring systems, effective synthetic routes were designed to efficiently achieve the combination of fused nitrogen-rich polycyclic aromatic N-oxides with different structures in a fused ring system. Through condensation cyclization and nitrogen oxidation transformation, the complicated fused nitrogen-rich polycyclic aromatic N-oxides formation is highly simplified. Combined with crystal analysis, density and sensitivity measurement and thermal performance study, we investigated the structure activity relationship rule. This research will lay the foundation for the final breakthrough of the design and synthesis of fused nitrogen-rich polycyclic aromatic N-oxides. In the same time, it can also provide reference for the design and synthesis of other new high energy density level compounds.
提升含能化合物能量密度水平是实现“打的狠”和“打得远”目标的迫切要求,研发新型高性能环系骨架是提升化合物能量密度水平的高效途径。富氮芳环N-氧化物作为理想含能结构单元,其并联所形成的稠环结构较之传统链式结构骨架紧密性更强,生成焓更高且氧平衡更加理想。本项目选取1,2,3,4-四嗪-1,3-二氧化物、氧化呋咱和1,2,3-双氧化三唑等氮氧比例最高的富氮芳环N-氧化物进行并联结构设计,通过碳碳键衔接获得高能富氮稠环N-氧化物结构。在深入发掘研究各个环系间转化规律的基础上利用有效的合成路线设计,将不同结构富氮芳环N-氧化物高效融合在并联的稠环结构当中。通过缩合环化、氮氧化转化等途径令原本复杂的富氮稠环N-氧化物合成路径高度简化。结合晶体解析、密度与感度实测及热性能研究,考察构效关联性规律,为最终突破富氮稠环N-氧化物的设计合成研究奠定基础,也为其他新型高能量密度水平化合物的设计与合成提供借鉴。
富氮芳环N-氧化物的高氮氧含量特征令其生成焓水平明显高于其他杂环,大量的氮氮键及氮氧键亦令其结构高度致密,成为新型高能量密度化合物的理想结构单元。本项目研究以富氮芳环N-氧化物结构为基础,重点进行了并联型富氮稠环氮氧化物的理论特性、合成方法、化合物结构及性能等方向研究。在理论特性方面,通过计算化学手段比较了不同结构的并联型富氮稠环N-氧化物的理论物化与爆轰性能,结果表明N-氧化物结构对整体性能,尤其是爆热性能的提升作用非常明显;在合成研究方面,对不同类型的富氮芳环N-氧化物结构进行了探索,表明唑类、呋咱类更易形成单N-氧化物结构而四嗪类结构更易形成双N-氧化物结构,且在构建并联体系时,伴随N-氧化物结构的增多,稳定性将显著下降。本项目研究积累的实验条件对于其他种类的含能材料研究同样具有应用价值,我们将研究过程中获得的实验条件进一步应用于制备其他类型含能结构的反应中,如硝化、氧化、环化等,并获得了部分其他种类的含能材料。本项目研究为包括并联型富氮稠环氮氧化物在内的含能材料研究提供了参考和借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
硬件木马:关键问题研究进展及新动向
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
新型5/6/5型富氮稠环高能炸药的分子设计与合成
富氮稠环吡(咪)唑并四嗪类高能低感炸药的设计、合成与性能研究
稠杂环醌式n-型有机半导体
松香基氮杂环抗病毒化合物的设计合成及构效关系研究