The heat mass transfer of multiphase and multicomponent coupled chemical reaction in the pore system is closely related to the utilization of low temperature waste heat source. They have the significance of subject cross and academic research. Furthermore they are very important for the energy saving and emission reduction and the development and application of relative science and technology. The theoretical and experimental methods are adapted to deeply and systematically study the catalytic reaction and heat mass transfer in the porous structure reactor in this project. Based on the advanced fast transient visual observation system, the special flow and heat transfer, and the catalytic endothermic and exothermic reaction phenomenon and their process properties are observed detailedly to explore and reveal the inner link and law between the porous structure characteristics and the physical and chemical changes in heat and mass transfer. On the basis of the reliably experimental study and quantitative measure, the mathematical and physical models for the multiphase and multicomponent heat mass transfer coupling the chemical reaction are developed by integrating the fractal theory and Lattice Bolzmann method. The physic-chemical mechanism and properties of heat mass transfer in the pore system are deeply studied, the mechanism of flow and heat transfer coupling chemical reaction, the cooperative and coupling effects of the chemical reaction, and energy mass conversion and transfer and their influences on the reaction conversion are deeply revealed. The aim is to obtain the effective measures and methods for the enhancement of heat mass transfer and the improvement of reaction conversion, and to provide important theory basis and key technique support for the relevant studies and applications.
孔隙体系内耦合化学反应的多相多组分热质传递与低温余热资源利用密切相关,具有学科交叉与重要学术意义,对节能减排及相关科技发展与应用至关重要。本项目采用理论与实验相结合方法对孔隙结构反应器内催化反应与热质传递过程进行系统深入研究:基于先进快速瞬态可视化观测系统,详细观测孔隙体系内特殊流动传热与催化吸放热反应现象与过程特性,探索与揭示孔隙结构特征与热质传递过程中物理化学变化间的内在联系与规律。在可靠实验研究基础上,将分形理论与Lattice-Boltzmann方法相结合,发展孔隙体系内耦合化学反应的多相多组分热质传递综合数理模型,深入研究孔隙体系内热质传递过程中物理化学变化机制与能质传递过程特性,深刻揭示耦合化学反应的流动传热机理、化学反应与能质转换和传递的协同与耦合效应及其对反应转换率影响规律,得出强化热质传递与提高反应转化率的有效措施与方法,为相关研究与应用提供重要理论依据与关键技术支撑。
本项目针对异丙醇-丙酮-氢气化学热泵系统中孔隙体系内复杂反应传递的关键基础科学问题,采用实验与理论相结合的方法,对孔隙体系内耦合化学反应的多相多组分热质传递进行了系统深入研究。实验获得了雷尼镍和非晶态雷尼镍催化剂上异丙醇脱氢和丙酮加氢反应动力学方程。建立了颗粒尺度上反应传递模型,研究了颗粒内扩散对反应的影响规律,为催化剂颗粒的设计提供了重要指导。将分形理论与Lattice-Boltzmann方法相结合,发展了孔隙体系内耦合化学反应的多相多组分热质传递综合数理模型,揭示了孔隙体系内热质传递机理及其与化学反应耦合作用机制。建立了催化剂颗粒随机填充和泡沫金属的反应器床层模型,详细分析了热质传递及其与化学反应的耦合与协同机制,并提出了反应精馏、超声波强化和多级串联放热反应器等有效强化反应器及化学热泵系统性能新方法。建成了异丙醇-丙酮-氢气化学热泵系统样机,填补了国内空白,技术性能达到国际先进水平,为该体系化学热泵/热化学利用系统进一步深入研究与应用奠定了重要基础,为低温余热尤其是间歇性、波动性余热高效利用提供了新途径。已发表SCI收录学术论文19篇,申请发明专利4项(已授权1项);培养多名青年学术骨干,其中1人次获中科院卢嘉锡青年人才奖,1人次获中科院青年创新促进会优秀会员,2人次获中科院工程热物理所青年突出贡献奖;培养博士研究生2名,其中1人次获国家奖学金,1人次获中科院院长优秀奖,1人次获吴仲华优秀学生奖, 1人次获“三好学生”。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
锌镍单液流电池封闭体系内循环动热质传递与电化学反应耦合机理研究
储热多孔介质热化学反应和孔隙/宏观尺度气固两相耦合热质传递机理
规整结构催化剂内多尺度多场耦合热质传递机理研究
基于孔隙尺度的纸张干燥过程热质耦合传递机理与模型研究