The synergy of catalytic reaction and multiphase and multicomponent heat and mass transfer, which are of significant importance for the utilization of low temperature waste heat source, have the significance of subject cross and academic research as well as the development of relative science and technology. The theoretical and experimental methods are adapted to deeply and systematically study the synergy of catalytic reaction and heat/mass transfer in the exothermic and endothermic reactors in this project. Based on the density function theory calculations and reaction kinetic experiments, the catalysts with high activity and selectivity which can be used for chemical heat pump are explored and prepared. The inner relations of the reaction kinetic characteristic and intrinsic catalyst property are revealed. The reaction kinetic model is also obtained. Based on the reliable experimental study and quantitative measurement, molecular dynamic simulation and Lattice Bolzmann method are used to develop the multi-scale reaction-transport models of the endothermic and exothermic reactor. The heat and mass transfer mechanism as well as their synergy with catalytic reaction are investigated at the different scales. The inner relations and rules of micro-structure characteristic, reaction-transport mechanism and macroscopically reaction-transport phenomenon are also deeply revealed. The aims are to obtain the effective measures and methods to achieve the effective synergy of heat/mass transfer and catalytic reaction, as well as to enhance reaction performance and energy performance of chemical heat pump. This project will provide important theory basis and key technique support for the relevant studies and applications.
摘要:催化反应与多相多组分热质传递的耦合与协同研究,具有显著学科交叉与重要科学意义,对低温余热资源深度利用及相关科技发展至关重要。本项目采用理论与实验相结合方法,对反应器内催化反应与多相多组分热质传递的多尺度耦合与协同进行系统深入研究:首先从分子尺度出发,基于密度泛函理论计算与反应动力学实验,探索选择适用于化学热泵的高效催化剂,详尽揭示反应动力学特性,并获得可靠动力学模型;分别结合分子动力学模拟和格子波尔兹曼方法发展颗粒尺度和反应器尺度的反应-传递综合数理模型,探索揭示不同尺度热质传递机理及其与化学反应的耦合与协同,以及微观结构特征和反应传递机理与宏观反应传递现象间的内在联系与规律;得出实现化学反应与热质传递的协同匹配、提高反应转化率与化学热泵系统效率的有效措施和方法,为相关研究及应用提供重要科学依据与关键技术支撑。
异丙醇-丙酮-氢气化学热泵利用可逆的吸/放热反应,将低温余热以化学能的形式回收并在高温下放出,可以实现余热品位提升,它具有温度适应范围宽、温度提升能力高、具备能量储存功能等优点,具有广阔的应用前景。本项目针对异丙醇-丙酮-氢气化学热泵系统中催化反应与热质传递耦合协同的关键基础科学问题,制备得到了高效异丙醇脱氢铜钴/石墨烯纳米催化剂,大幅提升了脱氢转化率,并提出了适合化学热泵的异丙醇脱氢液膜反应器,获得可靠动力学模型。其次,分析了液膜反应器中化学反应与能质转换和传递的协同与耦合效应及其对反应转化率的影响规律,获得了优化的结构和操作参数。再次,建立了颗粒和泡沫金属填充的固定床反应器模型,分析了床层内热质传递特性及其与化学反应的耦合机制,并在热泵系统层面分析了反应与传递的协同机制。建成了异丙醇-丙酮-氢气化学热泵系统样机,填补了国内空白,技术性能优于国际水平,为该体系化学热泵/热化学利用系统进一步深入研究与应用奠定了重要基础,为低温余热尤其是间歇性、波动性余热高效利用提供了新途径。已发表SCI收录学术论文15篇,申请发明专利4项(已授权2项);培养多名青年学术骨干;培养博士研究生2名,硕士研究生1名,其中1人次获国家奖学金,1人次获中科院院长优秀奖,2人次获吴仲华优秀学生奖, 1人次获“三好学生”。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于多模态信息特征融合的犯罪预测算法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
气载放射性碘采样测量方法研究进展
规整结构催化剂内多尺度多场耦合热质传递机理研究
基于孔隙尺度的纸张干燥过程热质耦合传递机理与模型研究
非常规油气储层多尺度热质传递的细观机理与特性分形分析
尺度与结构效应作用下的沸腾核化机理与界面热质传递特性