This proposal will devote to study the quantum properties in dissipatively coupling cavity optoimechanical system and array of cavity optomechanical systems with dissipatively coupling. Meanwhile, the effects of destructive interference of quantum noises and nonlinear dissipation on the preparation of mechanical ocsillator(s) in nonclassical states and the realization of quantum sysnchronization of mechanical oscillators will be discussed in detail. Firstly, the research on how to build up and transfer the nonclassical correlations among different dissipatively coupling cavity optomechanical systems based on the destructive interference of quantum noises will becarried out. Then designing the array of cavity optomechanical systems with dissipatively coupling, the effect of destructive interference of quantum noises on the quantum synchronization and the many-body property of mechanical oscillators will be investigated. The method for solving quantum master equation with nonlinear dissipation terms will be proposed. The influences of the nonlinear dissipation on the preparation of oscillators in nonclssical states and the quantum synchronization among oscillators will be revealed. Furthermore, how to realize the strong nonlinear coupling between photon and phonon at the single-photon level assisted by auxiliary system coupled to photon or phonon in the dissipatively coupling cavity optomechanical system and array of cavity optomechanics system with dissipatively coupling will be analyzed. With the aid of the destructive interference of quantum noises and the nonlinear dissipation, the proper nonlinear phonon bath will be constructed for the production of non-Gaussian states of oscillators with nonclassical properties. New schemes will be proposed for the generation of non-Gaussian states of mechanical oscillators which are protected from the thermal environment. The potential applications of these states in quantum information processing and high-precision measurement will be stressed.
本申请项目拟研究单个耗散耦合型腔光力系统和耗散耦合型腔光力阵列的量子性质,揭示量子噪声相消干涉、耗散的非线性等对制备机械振子非经典态和实现振子间的量子同步等性质的影响。深入研究如何利用耗散耦合型腔光力系统特有的量子噪声相消干涉来实现不同耗散耦合型腔光力系统之间非经典特性的建立及高可信度传递,设计适当的耗散耦合型腔光力阵列,研究量子噪声干涉对振子间的量子同步现象及多体量子性质的影响。发展求解含有非线性耗散的量子主方程的方法,揭示出非线性耗散过程对制备机械振子振动的非经典态和实现振子间量子同步的作用。研究如何利用辅助系统与耗散耦合型腔光力系统和腔光力阵列中光子或声子的耦合,在单光子水平上提高光子与声子的非线性相互作用,利用量子噪声的相消干涉以及耗散的非线性,来构建声子的适当的非线性热库,提出制备抗环境干扰的振子非高斯非经典态的新方案,并分析这些非经典态在量子信息科学和精密测量中的应用。
本项目已经按计划完成了相关的研究工作,同时将我们的研究工作拓展到量子点体系和光学波导单向耦合系统的量学性质等方面。在本项目的资助下,我们发表SCI论文18篇,其中在Phys. Rev. A发表论文11篇, 在Opt. Express上发表论文3篇。课题组先后有18名研究生参加了本项研究工作,其中5人获博士学位,9人获硕士学位。取得的主要成果包括:.(1)利用量子相消干涉效应,在量子点—腔场—机械振子混合体系中研究了如何快速高效地将机械振子冷却至量子基态,接着利用腔量子电动力学和光力学组成的混合量子系统制备机械振子非经典态的方案。还在两个不同的耗散型腔光力系统中通过注入宽频双模压缩光,将两个机械振子的运动制备到纠缠态的方案。.(2)研究了双色激光场驱动的量子点在多模热声子库作用下的量子特性,以及由激光场驱动的耦合量子点与纳米机械振子相互作用的动力学性质。.(3)研究了纳米机械振子产生的声子模与光腔模之间形成的稳定连续变量纠缠及EPR操控的性质。研究了与机械振子耦合的双模光腔系统的EPR引导性质,实现了腔场与低频机械振子间在稳定区域内强的量子引导。.(4)我们还研究了双原子辐射系统共振荧光频率滤波的量子关联,量子系统间光与物质手征耦合的相互作用,揭示了腔量子电动力学系统中光子的完全相干吸收对弱光非线性的依赖关系。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
拥堵路网交通流均衡分配模型
二次耦合腔光力系统中量子非线性特性的研究
光机械耦合阵列腔系统的量子性质研究
耗散腔QED系统在量子模拟中的应用研究
腔光力学系统中量子纠缠及Casimir力调控机制研究