At present, it is recognized that hydrogen production by solar light water splitting is one of the most effective ways to solve the problem of energy and environment of the world. While, the main bottleneck for current photoelectrochemical water splitting system is to prepare high-performance photoanodes with good chemical durability and low cost. Metal oxide photoanode, such as TiO2, is a good candidate for solar water splitting due to its several advantages, like durability, suitable band edge location and low cost. This project aims to achieve oxygen vacancy and heteroatom co-doped metal oxide photoanodes with high performance for water splitting by ion implantation doping technology and followed vacuum annealing treatment. The quasi in situ synchrotron radiation photoelectron spectroscopy (SRPES) and the near edge X-ray absorption spectroscopy (NEXAFS) and other characterizations will be used to illuminate the influence of oxygen vacancy incorporation on heteroatom doped TiO2, particularly such as optical, electrical, spectral thermodynamics/dynamics, microstructure properties, and the corresponding photoelectrochemical performance. Combing with the density functional theory (DFT) simulation, the potential mechanism will also be figured out. Basing on these studies, the method will be applied to other metal oxide photoanodes. We will finally obtain the technology of application of ion beam technique and vacuum annealing condition in the doping and modification of metal oxide photoanodes. This study will also push the development in the research field of hydrogen production by solar light water splitting.
太阳光水分解产氢气是解决能源与环境问题的重要途径。当前,实现高效的太阳光光电化学分解水的技术瓶颈主要是:寻找与光阴极相匹配的高效、稳定、低成本的产氧光阳极。金属氧化物以其出色的化学稳定性、匹配的能带位置和低成本一致被寄予厚望。本项目拟选取TiO2光阳极材料为代表,利用离子注入技术,结合理论计算,选择合适的非金属,金属离子进行单元素掺杂和双元素共掺,然后结合后续的真空退火处理,构筑有效的异质元素掺杂和氧空位自掺杂的整合与对比分析。通过利用同步辐射光电子能谱/X射线近边吸收谱及其他研究手段阐明氧空位的引入对异质元素掺杂TiO2在光学、电学、光谱热力学/动力学以及局部微观结构的影响,并关联对应的光电化学催化性能,揭示其构效关系。在此基础上,扩展本方法到其它金属氧化物,掌握离子注入和真空退火掺杂改性金属氧化物光阳极技术,并为其它掺杂体系的设计和优化提供有效的科学指导。
利用太阳光光电化学分解水是绿色、可持续产生氢能的有效途径。然而,目前该体系的转换效率普遍偏低,其瓶颈在于没有找到合适的光阳极材料能够高效且稳定的氧化水产氧。过渡金属氧化物半导体基于其优异的耐光腐蚀性,高的光生空穴氧化能力等优点,一直是光阳极材料中被寄予厚望的备选者。针对金属氧化物能带工程中杂质角色的认识,探寻实现杂质活化的根本因素及其内在活化机制,并将金属氧化物光阳极的催化活性提高到一个崭新的阶段。
{{i.achievement_title}}
数据更新时间:2023-05-31
Ordinal space projection learning via neighbor classes representation
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
Image super-resolution based on sparse coding with multi-class dictionaries
Phosphorus-Induced Lipid Class Alteration Revealed by Lipidomic and Transcriptomic Profiling in Oleaginous Microalga Nannochloropsis sp. PJ12
Numerical investigation on aerodynamic performance of a bionics flapping wing
水相稳定宽光谱捕光金属-有机框架的制备及光解水制氢研究
复合氧化物纳米管阵列电极材料的制备及其光解水制氢性能的研究
BiVO4微纳结构光电极组合化学设计、构筑及其光解水制氢研究
(氧)氮化物光电极太阳能分解水制氢的研究