Owning to superior electrical/opto-electronic properties and good mechanical flexibility compared with conventional bulk Si/Ge materials, single-crystalline Si/Ge nanomembranes can be integrated with flexible substrates, which has widely potential for the applications into next generation of microelectronic devices and circuits, i.e., flexible electronics. However, the transfer efficiencies, integrities, and alignments of the transferred single-crystalline Si/Ge nanomembrane arrays cannot be exactly preserved by conventional transfer approaches, which severely affect the fabrication and the stability in performances of the corresponding flexible electronic devices. Moreover, affected by the surface/interface structures, the opto-electronic properties of single-crystalline Si/Ge nanomembranes will be quite different with that of bulk materials. Aiming at these problems, we take single-crystalline Si/Ge nanomembranes as the research objects in this project, and combine the theoretical analysis with optimizing pattern designs to transfer nanomembranes onto flexible substrates with controllable transfer printing fabrication process. Also, we will fabricate Schottky devices to investigate the opto-electronic properties of single-crystalline Si/Ge nanomembranes and the corresponding devices with different thickness and interface structures. Our works in this project will resolve the problems of controllable transfer of single-crystalline Si/Ge nanomembranes for the applications of flexible electronics, also will be facilitate to promote further development of flexible electronics with intensive understanding of their opto-electronic performance.
与传统体硅/锗材料相比,单晶硅/锗纳米薄膜具有良好的机械柔性,优异的电学、光电等物理性质,因此能够与柔性衬底相集成而广泛应用于下一代微电子器件与电路——柔性电子学中。然而,在面向柔性电子学应用时,传统的转移方法很难保证薄膜转移成功率、薄膜完整性、薄膜阵列排列次序等,极大地影响了相关柔性电子器件的制备和器件性能的稳定性。此外,受表面态/界面结构作用的影响,单晶硅/锗纳米薄膜必将表现出与体材料截然不同的光电性质。针对上述问题,本项目以单晶硅/锗纳米薄膜为研究对象,结合理论分析、优化结构设计,实现纳米薄膜向柔性衬底集成时的可控转印制备。构建肖特基器件,研究不同厚度、不同界面结构的单晶硅/锗纳米薄膜及器件的光电性能。本项目的研究,解决了单晶硅/锗纳米薄膜面向柔性电子应用时所面临的可控转移难题,在深入理解单晶硅/锗纳米薄膜及器件光电性质的基础上有助于推动柔性电子学的进一步发展。
与传统体硅/锗材料相比,单晶硅/锗纳米薄膜具有良好的机械柔性,优异的电学、光电等物理性质,因此能够与柔性衬底相集成而广泛应用于下一代微电子器件与电路——柔性电子学中。本项目的研究对象为面向柔性电子技术的超薄、柔性、单晶硅(锗)纳米薄膜,主要研究了超薄、柔性、单晶硅(锗)纳米薄膜所特有的电学输运特性、光电性质,通过表面结构、界面结构等多维修饰手段,研制出高性能光电探测器件。此外,提出了断裂可控转移技术,并研制出柔性硅基湿度传感器、可拉伸锗基光电探测器、温度触发瞬态硅基CMOS器件等。最终,本项目在生物可降解、生物医疗电子器件方面进行了初步探索,研制出适用于可植入电子器件的无线能量传输系统,为生物可植入瞬态电子的应用奠定了一定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
聚锗烷纳米线和线性低聚锗烷的结构和光电性能模拟
柔性可延展电子有转角印戳转印的力学机理与模型研究
高效柔性单晶硅薄膜太阳能电池的纳米制造
基于单晶硅纳米薄膜的柔性微波单片集成电路研究