Fuel combustion simulation is a powerful tool for aeroengine design. However, nowadays the mechanisms and kinetic parameters for some key reactions in the low-temperature combustion are still unclear, which makes the construction of the low-temperature combustion model very difficult and thus has seriously restricted the design process of the aeroengine. In this project, quasiclassical trajectory (QCT) simulations as well as other kinetic calculations will be performed to deeply and systematically research the kinetic and dynamical behaviors of several typical reactions between alkyl radicals and molecular oxygen such as CH3CH2+O2, CH3CH2CH2+O2 and CH3(CH2)3CH2+O2 gas-phase reactions which play significant roles in the self-ignition and low-temperature combustion process. We will obtain accurate rate constants and detailed kinetic and dynamic properties of the elementary reactions in the systems, reveal various new reaction mechanisms, elaborate the characteristics and laws of this type of reaction at the molecular dynamics level, and develop the new classification criterion for combustion reactions based on microscopic dynamics information. We will also develop efficient combustion mechanism analysis schemes based on the QCT method. The present research will be beneficial for understanding combustion reactions at the potential energy surface and quantum-state level, and has important values in the construction of high-efficiency and accurate low-temperature combustion model, which will be beneficial for the development of advanced aeroengine design.
燃料燃烧模拟是航空发动机设计的有力工具。目前对于低温燃烧中一些关键反应的动力学信息和微观机制尚不清楚,使低温燃烧模型的构建十分困难,严重制约了发动机的设计。本项目拟通过准经典轨线模拟并结合其它动力学方法,以在自点火和低温燃烧过程中扮演重要角色的烷基与氧分子的反应作为研究对象,对CH3CH2+O2,CH3CH2CH2+O2,CH3(CH2)3CH2+O2等反应体系进行深入系统的动力学理论研究。获得体系中各基元反应的高精度的速率常数以及详细的微观动力学性质,揭示体系中新的微观反应机制,在分子动态学的层次上阐明此类反应的特征和规律,发展基于微观动力学信息的燃烧反应分类标准。并依此为基础,发展基于准经典轨线方法的燃烧机制分析方案。研究结果将有助于在势能面和量子态的层次认识燃烧反应,对于构建高效、准确的喷气燃料低温燃烧模型具有重要意义,将有助于先进航空发动机的设计。
燃料燃烧模拟是航空发动机设计的有力工具。目前对于低温燃烧中一些关键反应的动力学信息和微观机制尚不清楚,制约了低温燃烧模型的构建。本项目通过详细的准经典轨线模拟并结合其它动力学方法,对燃烧过程中的典型反应体系CH3CH2+O2,CH3CH2CH2+O2,C+H2等开展了理论研究,获得了反应速率常数以及各种详细的微观动力学性质,揭示了体系中新的微观反应机制,在分子动态学的层次上阐明了这些反应的特征和规律,并探索了基于微观动力学信息的燃烧反应分类标准以及基于准经典轨线方法的燃烧机制分析方案。研究结果将有助于在势能面和量子态的层次认识燃烧反应,对于构建高效、准确的喷气燃料低温燃烧模型具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
钢筋混凝土带翼缘剪力墙破坏机理研究
敏感性水利工程社会稳定风险演化SD模型
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
内质网应激在抗肿瘤治疗中的作用及研究进展
振转激发的影响:多通道化学反应体系的准经典轨线研究
基于轨线的库仑修正强场近似(TCSFA)的半经典理论
燃烧反应非谐振效应和低温燃烧机理研究
连结轨线的存在性与孤立块