With the rapid development of high-technology equipment, the requirements for the self-lubricating spherical plain bearings under high applied load, high sliding speeds and high temperature working conditions are increasing. As the key component for self-lubricating spherical plain bearing, the mechanical and tribological properties of self-lubricating fabric liner materials is very important for extending the life-span of self-lubricating spherical plain bearings, and has become an important research direction in the field of material tribology. In this research, we will synthesize hybrid nano-composites and use the layer-by-layer self-assembly technology to nondestructively modify PTFE fiber and aramid fiber surfaces, and hybrid nano-fillers were uniformly anchored on the above fibers surfaces in this process, to achieve non-damage surface decorated and functional fillers simultaneously reinforcement self-lubricating fabric liner. Furthermore, hybrid nano-fillers are evenly distributed in the whole self-lubricating fabric liner after layer-by-layer self-assembly modification, which can enhance the self-lubricating fabric liner during the whole service process. After this study, the hybrid nano-composite fabrication process can be acquired and optimized the process condition of layer-by-layer self-assembly technology to nondestructive modified self-lubricating liner in order to improve the thermo-dynamic and tribological performances of self-lubricating fabric liner under harsh conditions. This research has important scientific and practical significance for self- lubricating fabric liner materials in the field of high technology, whether from basic research or application perspective. The research of self-lubricating fabric liner materials in the field of high and new technology application has important scientific and practical significance.
高新技术装备的快速发展对自润滑关节轴承在高载、高速及高温工况下的性能要求不断提高,作为其关键材料,自润滑纤维织物衬垫材料的力学及摩擦学性能对自润滑关节轴承服役寿命至关重要,也成为材料摩擦学领域的重要研究方向。本项目中我们将制备二元杂化纳米复合材料,并采用层层自组装技术将二元杂化纳米复合材料均匀负载到聚四氟乙烯纤维和芳纶纤维表面,实现对自润滑织物复合材料表界面无损修饰−二元杂化纳米复合材料一体化增强的目的。此外,采用层层自组装技术可将纳米复合材料均匀分布于整个自润滑衬垫中,使其在自润滑织物衬垫整个服役过程中起到连续增强的作用。通过本项目的研究,可以掌握二元杂化纳米复合材料的制备工艺,优化层层自组装技术应用工艺条件,为提升高载、高速及高温等苛刻工况下服役的自润滑纤维织物衬垫力学性能和摩擦磨损性能提供一种新技术和新方法。该研究对自润滑纤维织物衬垫材料在高新技术领域的应用具有重要的科学和实际意义。
本项目旨在通过简单且环境友好的方法实现纤维的无损界面修饰和功能填料对自润滑衬垫的连续增强。该方法不在苛刻条件下对纤维进行刻蚀处理,不会对纤维的力学性能产生明显影响。此外,在纤维表面修饰过程中将功能填料引入到纤维表面,使其均匀的分布于整个自润滑织物衬垫体系中,在自润滑纤维织物衬垫整个服役过程中均能起到连续增强作用。采用不同的制备工艺、表面修饰工艺制备了多种功能增强材料(g-C3N4,MoS2/h-BN、CuO/g-C3N4, UiO-66-HCSs及MoS2-Talc),对其增强的聚合物复合材料的摩擦磨损性能进行了系统评价。结果表明通过对功能增强材料尺寸、杂化比例及其在聚合物基体材料中加入量的精细调控,可非常明显的改善聚合物复合材料的力学性能和摩擦磨损性能。与此同时,利用层层自组装工艺对纤维织物进行无损界面修饰和功能增强填料的同步增强(氧化石墨烯、MgAl-LDH),试验结果表明采用层层自组装修饰的自润滑衬垫材料表面浸润性明显提升,没有对衬垫的力学性能产生损伤。栓-盘摩擦磨损试验结果表明,层层自组装修饰可以提升自润滑衬垫的承载能力,组装修饰到纤维表面的功能增强材料在摩擦实验过程中可以起到减摩抗磨的效果,提升自润滑衬垫的综合性能。通过本项目的研究为自润滑衬垫材料的界面性能的提升提供了一种可借鉴的方法,该研究对自润滑衬垫材料在高新技术领域中的应用,无论从基础研究还是从应用的角度,都具有一定的学术价值和实用意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
非均质性引起自润滑关节轴承用织物复合材料摩擦各向异性研究
镍铝基高温自润滑复合材料的设计制备及其摩擦学性能研究
自润滑钨基复合材料的制备与摩擦学性能
仿生结构高温自润滑纳米复合陶瓷材料的设计、制备与摩擦学性能研究