Sparsity constrained optimization has been applied widely in signal and image processing, machine learning, pattern recognition and computer vision, and so on. Recently, the models and algorithms of sparsity optimization have been rapidly developed, while the correlation theory is lack. In this project, we consider the sparsity optimization with set inclusion constraint by utilizing the theory in convex analysis, variational analysis and perturbation analysis. We mainly study the theory of first- and second-order optimality conditions, sensitivity analysis and error bound, and construct the algorithm, discuss the local convergence and rate of convergence of this algorithm.
稀疏约束优化问题被广泛应用于信号回收、图像处理、机器学习、图像识别、计算机显像等诸多领域,倍受学者关注. 目前,有关稀疏优化问题的模型、算法发展迅速,而有关稀疏优化问题的最优性条件,稳定性分析等理论结果却相对匮乏. 本项目以带有集合包含约束的稀疏优化问题为对象,利用凸分析、变分分析和扰动分析等知识,研究一阶、二阶最优性条件,稳定性分析与误差界,设计最优化算法,并讨论算法的局部收敛性,计算收敛速度.
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
药食兼用真菌蛹虫草的液体发酵培养条件优化
现代优化理论与应用
汽车侧倾运动安全主动悬架LQG控制器设计方法
高分五号卫星多角度偏振相机最优化估计反演:角度依赖与后验误差分析
均衡约束优化问题的二阶最优性条件和稳定性分析
带有抽象约束的稀疏优化问题的最优性条件
集值优化问题的逼近解及二阶最优性条件
两类非凸约束优化问题的最优性条件及稳定性分析