For the purpose of solving the problem of high-precision unmanned aerial vehicle (UAV) autonomous landing guide, under the irregular movement of the ship caused by the harsh environment such as blizzard, and the low pose estimation accuracy of UAVs, this project propose a pose estimation method based on multi-layer and multi-source data fusion and a motion planning method by imitating the driver's visual behavior. Based on the ship boundary detection of space-time correlation four-dimensional spatial filtering, the stochastic movement model of ships is established by using the mathematical modeling method for solving inverse problems, which lays the foundation for the study of motion compensation technology for ships guided for UAVs. Study the multi-layer and multi-source data fusion structure with Lidar, visual and inertial navigation devices, to realize high-precision relative pose estimation of UAVs, effectively solve the influence of weather and distance. Considering the ship movement, the pose and the remaining fuel of UAVs, the motion planning method of UAVs by imitating the driver's visual behavior is studied, which makes the motion planning possesses the anthropomorphic characteristics and meets the requirement of safety. The result of this project would provide practical theoretical and technical support for the high-precision landing guide of UAVs under the harsh environment.
课题针对暴风雪等恶劣环境引起着陆船舰不规则运动、无人机位姿估计精度低等影响无人机自主精确着舰问题,以建立符合实际状况的船舰六自由度模型为切入点,研究多源数据多层融合的无人机位姿估计和仿驾驶员视觉行为的运动规划方法,使之满足恶劣环境下高精度无人机自主着舰引导。通过时空关联四维空间滤波的船舰边界检测,利用反问题数学建模方法建立实际与经典结合的船舰随机运动模型,为无人机着舰引导的船舰运动补偿技术研究奠定基础;研究激光雷达、视觉与惯性导航器件的多源数据多层融合结构,实现高精度的无人机的相对位姿估计,有效解决天气、距离的影响;结合船舰运动、无人机位姿及无人机剩余油量等关系,研究仿驾驶员视觉行为的运动规划方法,使得着舰运动规划具有拟人化特性,满足着舰安全性的需求;课题研究为无人机恶劣环境自主精确着舰引导提供切实可行的理论与技术支持。
在舰载无人机的完整作战链条中,需要无人机在野战恶劣环境和小型舰艇上快速自主起降。课题针对暴风雪等恶劣环境引起着陆船舰不规则运动、无人机位姿估计精度低等影响无人机自主精确着舰问题,已开展的研究工作主要包括:设计了一种时空关联四维空间的船舰检测算法,解决剔除恶劣环境影响数据出现噪声问题,使之满足恶劣环境下高精度无人机自主着舰引导;提出了一种基于以视觉与激光测距为基础的随机海浪模型分析方法,以实际探测模型与经典理论模型相结合的船舰运动随机位移模型,为无人机着舰引导的船舰运动补偿技术研究奠定基础;设计了一种惯性导航、激光数据和图像信息多源数据多层融合算法结构,实现了无人机自主位姿估计高精度与高效性;建立了无人机着舰轨迹与无人机剩余燃油量、位姿、舰船运动参数的相互约束关系,提出了一种基于驾驶员视觉行为的无人机自主着舰航迹规划方法,确保无人机在安全、平稳着舰。项目研究结果对形成我国无人机厘米级自主着舰关键问题的创新理论、推进无人机在运动平台着陆相关技术的可持续发展、可拓展性,具有重要的理论意义和现实意义。项目的部分研究成果已在中船702所的“永乐科考”科学试验平台上得到了应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
内点最大化与冗余点控制的小型无人机遥感图像配准
针灸治疗胃食管反流病的研究进展
一种改进的多目标正余弦优化算法
一种加权距离连续K中心选址问题求解方法
基于智能视觉感知的舰载无人机着舰新技术探索
基于仿鹰眼视觉的无人机自主着舰导引技术研究
基于分段仿射建模的舰载机着舰过程自动引导技术研究
舰载无人直升机自主着舰环境感知与位姿估计方法研究