Autonomous underwater vehicles (AUVs) equipped with mechanical manipulators will definitely improve their operation ability, which has great significance in building marine observation system. The existing hydraulic driving underwater manipulators have the disadvantage of huge structure, high power requirements and it is difficult to adapt to the development trend of miniaturization. In recent years, the development mode of deep-sea pressure balance with oil filled and driven by brushless DC motor need to deepen the research on sealing , pressure compensation, and further reduce the energy consumption, oil leakage and seawater intrusion risk. Aiming at the bottleneck problem of deep sea water pressure adaptability, considering that friction drive can allow for seawater entry, this proposal proposed to use of piezoelectric conversion and friction driving principle to construct an open-frame structure mechanical manipulator joint drive method. The mechanical manipulator joint’s two freedom degrees of rotation is driven by friction produced by piezoelectric vibrator. This driving method has the advantages of simple structure, quick response, self-locking, no electromagnetic radiation, etc. The project will investigate the impact of sea water pressure on the dynamic behavior of piezoelectric vibrator and the seawater corrosion on ultrasonic vibration energy transfer efficiency of friction interface. To alleviate the restriction of high water pressure in the deep sea to the driving system, establish the high efficiency friction drive theory. To build a new theory and method of improving joint’s driving efficiency, a small mechanical manipulator driving system with simple structure, good mobility and high control precision will be constructed in order to support the overall optimization and performance improvement of mini AUV.
为自治潜航器(AUVs)装备机器手,提升作业能力,对构建海洋观测系统具有重要意义。现有液压式水下机器手结构庞大、功率要求高,难以适应AUV微小型化发展趋势;近年来发展的充油平衡深海水压、无刷直流电机驱动方式,还需在密封、压力补偿方面深化研究,进一步降低能量消耗和油液泄漏、海水入侵的风险。针对深海水压适应性这一瓶颈问题,考虑到摩擦驱动可以允许海水进入,本项目组提出利用压电转换和摩擦驱动基本原理构建全开放式机器手关节驱动方法,解除深海高水压对驱动系统的制约。关节的两个旋转自由度由构成机器臂(或指节)的压电振子摩擦驱动,结构简单,同时发挥压电驱动的快响应、断电自锁、无电磁辐射等特点。研究水压对压电振子动力学行为的影响规律、海水腐蚀对超声振动摩擦界面能量传递效率的作用规律,建立高效摩擦驱动理论和方法,构建结构简单、随动性强、控制精度高的小型机器手驱动系统,支持我国微小型AUV的整体优化和性能提升。
面向深海微小型潜航器配备水下机器手的应用需求,针对现有液压、电磁驱动系统难以应对深海高水压的瓶颈问题,提出了以开放式摩擦驱动方法构建机器关节以缓解水压对驱动系统束缚的新理念。基于该理念,构建了4种无需耐压壳、无需动密封、断电无功耗自锁、运动灵活度高、功率密度大、体积小、重量轻的压电驱动机器关节。采用传递矩阵法,推导了变高度非对称梁单元的传递方程,建立了刚性面上多个状态向量间的并联传递条件,组合得到了并联闭环压电振子的传递矩阵模型,分析了水压引起的频率变化。利用有限元法,开展了夹心式弯振压电振子的湿模态分析,揭示了水的附加质量对结构固有频率的作用规律。模拟了低温(0~4℃)、高盐度(3.5%)的海底环境,进行了夹心式弯振压电振子的长期腐蚀实验,氧化膜的腐蚀物和海盐的微析出物改变了接触表面状况,超声摩擦驱动刷新着接触界面。借助深海压力模拟设备,开展了M形压电振子驱动的机器关节在高水压环境的适应性实验,证明了该理念的可行性。在本项目资助下,发表学术论文18篇(SCI收录16篇),申请发明专利24项(已授权5项),培养硕士3人,另有2名博士研究生正在本项目的资助下开展课题研究。本项目的研究成果突破了高水压对驱动系统进入深海作业的限制,可指导所有深海作动装备(如深海机器关节、深海释放器、深海推进器)的驱动源的设计,为我国探测、开发深海和实施海洋强国战略提供了强力的技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
中国参与全球价值链的环境效应分析
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
湖北某地新生儿神经管畸形的病例对照研究
托卡马克检测维护机器人压电驱动原理与方法的基础研究
输入饱和约束下AUV全驱动/欠驱动位形切换跟踪控制
压电陶瓷微驱动器件极化模型与驱动方法的研究
三自由度压电球形微操作手驱动机理及控制方法的研究