Reaction wheel has been used for high-precision spacecraft attitude control due to its advantages of continuous output torque, high precision, low consumption, low pollution and long operating life. However, there are several difficult problems that restrict the precision of spacecraft attitude control. On the one hand, advanced control methods are designed without considering the limitation and error of actuators, and the dynamics of actuators are generally neglected. On the other hand, nonlinearity of the friction torque which occurs when the speed of reaction wheel crosses zero will make the spacecraft attitude out of control transiently in reaction wheel attitude control systems. And at the same time, for spacecrafts with complex structure, the precision of attitude control is affected by various disturbances such as the vibration of flexible appendages as well as actuator error. Therefore, in this project, the coupled dynamic model of the spacecraft attitude control system will be established based on reaction wheel dynamics. The anti-friction control method will be studied to treat the zero-crossing friction of reaction wheel. The reaction wheel dynamics based anti-disturbance attitude control under multiple disturbances will also be studied. Finally, semi-physical simulation verification of the proposed control method will be carried out to offer theoretical foundation for researches on reaction wheel dynamics based high-precision spacecraft attitude control technology.
反作用飞轮具有输出力矩连续、高精度、低消耗、低污染、长寿命等优点,已被应用于多种需要进行高精度姿态控制的航天器上。然而现阶段航天器高精度姿态控制技术受到以下难题制约:1、先进控制方法的设计没有充分考虑控制执行机构的能力限制和输出误差影响,忽略了执行机构动态特性;2、飞轮姿态控制系统中,反作用飞轮低速摩擦力矩的非线性变化会导致航天器姿态暂时失控;3、复杂结构航天器除执行机构误差之外,挠性部件振动等多种干扰亦会影响整星的姿态控制精度。因此,本项目建立含有反作用飞轮动态特性及干扰特性的姿态控制系统耦合动力学模型;研究反作用飞轮低速抗摩擦控制方法;开展多源干扰环境下基于反作用飞轮动态特性的抗干扰姿态控制方法研究;在此基础上,开展基于反作用飞轮动态特性的抗干扰姿态控制半物理仿真验证研究,为基于反作用飞轮动态特性的航天器高精度姿态控制技术的研究提供理论基础。
反作用飞轮具有输出力矩连续、高精度、低消耗、低污染、长寿命等优点,已被应用于多种需要进行高精度姿态控制的航天器上。然而现阶段航天器高精度姿态控制技术受到以下难题制约:1、先进控制方法的设计没有充分考虑控制执行机构的能力限制和输出误差影响,忽略了执行机构动态特性;2、飞轮姿态控制系统中,反作用飞轮低速摩擦力矩的非线性变化会导致航天器姿态暂时失控;3、复杂结构航天器除执行机构误差之外,挠性部件振动等多种干扰亦会影响整星的姿态控制精度。因此,本项目建立含有反作用飞轮动态特性及干扰特性的姿态控制系统耦合动力学模型;提出反作用飞轮低速抗摩擦控制方法;提出多源干扰环境下基于反作用飞轮动态特性的抗干扰姿态控制方法;在此基础上,半物理仿真实验验证基于反作用飞轮动态特性的抗干扰姿态控制方法,为基于反作用飞轮动态特性的航天器高精度姿态控制技术的研究提供理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
具有随机多跳时变时延的多航天器协同编队姿态一致性
新产品脱销等待时间对顾客抱怨行为的影响:基于有调节的双中介模型
机电控制无级变速器执行机构动态响应特性仿真研究
汽车侧倾运动安全主动悬架LQG控制器设计方法
航天器姿态系统饱和抗干扰控制方法的研究
基于磁悬浮飞轮转子转轴主动偏转的航天器高稳定度姿态控制方法
高分辨对地观测航天器反作用飞轮组件扰动机理及其控制策略研究
变质心航天器高动态姿态机动控制方法