用于痫样脑电在线检测的gm-C小波滤波器实现理论与方法研究

基本信息
批准号:61504008
项目类别:青年科学基金项目
资助金额:20.00
负责人:赵文山
学科分类:
依托单位:北京交通大学
批准年份:2015
结题年份:2018
起止时间:2016-01-01 - 2018-12-31
项目状态: 已结题
项目参与者:郭勇,余晶晶,齐振国,梅轩,丁美美,赖允平
关键词:
运算跨导电容电路痫样波形检测穿戴式动态脑电模拟小波滤波器在线数据缩减
结项摘要

Wearable ambulatory EEG (WAEEG) system has been considered as the frontier research in the field of epilepsy diagnosis. Currently, the research of WAEEG is focused on the online EEG data reduction, whose core task is to design the epileptiform waveform (EW) detection circuit. Under this background, this project plans to conduct research on the realization theory and method of extremely low-frequency gm-C wavelet filter for EW detection, mainly involving: (1) Propose a novel approximation method to enhance EW detection precision and facilitate real-time operation by constructing the approximation model for real-valued wavelet bases and the phase approximation model for complex wavelet bases on basis of Moving Least Square, and obtaining the optimization solution by utilizing non-uniform sampling strategy. (2) Propose a novel construction method for optimal gm-C real-valued wavelet filter structure based on matrix scale theory to collaboratively enhance the generality and dynamic range by selecting multiple loop feedback structure as basic frame and optimizing the coefficient matrix of nodal equation using matrix operations. Then, based on the aforementioned research, the construction method for optimal ‘structure-shared’ gm-C complex wavelet filter structure is presented to minimize the chip size and power dissipation. (3) Propose a design method for the transconductor cell with ultra-low transconductance by using series-parallel current mirrors, by which the noise and mismatch errors can be reduced. (4) Compare the EW online detection performance between the gm-C real-valued and complex wavelet filters by using real EEG data, and complete the chip fabrication and measurement of the selected gm-C wavelet filter by using 0.18um CMOS technology.

穿戴式动态脑电(WAEEG)是癫痫诊断技术的前沿研究方向。目前WAEEG研究的焦点为脑电信号的在线数据缩减,其核心任务是痫样波形(EW)检测电路的设计。本项目拟研究EW检测用极低频gm-C小波滤波器的实现理论与方法,包括:(1)提出基于移动最小二乘的实小波基逼近模型和复小波基相位逼近模型,并利用非均匀采样方法优化求解,从而提高EW检测的精度和实时性。(2)提出基于矩阵标定理论的gm-C实小波滤波器优化结构,以多回路反馈结构为框架,利用矩阵运算优化节点方程系数矩阵,从而实现通用性和动态范围的协同提升;在此基础上,提出“共享型”gm-C复小波滤波器的优化结构,以降低系统的体积与功耗。(3)提出基于串联-并联电流镜技术的极低跨导值gm单元设计方法,以降低电路的噪声和失配误差。(4)利用真实脑电数据评估gm-C实小波和复小波滤波器的EW在线检测性能,完成0.18微米CMOS工艺下的流片和测试验证。

项目摘要

癫痫是神经系统常见疾病之一,其临床诊断的主要工具为脑电信号的痫样波形检测。传统动态脑电系统为有线连接装置,具有体积大、影响患者日常活动等缺点。作为一种改进技术,穿戴式动态脑电可无线传送脑电数据,其成功实施的关键在于痫样脑电在线检测算法的低功耗硬件实现。. 本项目对用于痫样脑电在线检测的低功耗gm-C小波滤波器的实现理论与设计方法进行了研究,在小波基有理分式逼近、小波滤波器结构设计、极低跨导值gm电路构造,及痫样脑电检测算法实现等方面取得了诸多研究成果,主要包括:(1)提出了基于智能优化算法的模拟小波基设计方法,构造了实小波基时域逼近的数学模型,分别采用混合遗传、人工鱼群等算法求解高斯族和振荡性小波基的最优逼近函数;利用高斯族小波基的特点,构造了实小波基频域逼近的单分子数学模型,融合外点罚函数法进行约束处理,采用遗传算法优化求解;基于“共极点”逼近思想,以模值和相位为优化目标,构造了复小波基时域逼近的数学模型,提出了量子遗传优化求解方法。(2)提出了gm-C小波滤波器结构设计方法,构造了零、极点实现电路相互独立的gm-C实小波滤波器结构及动态范围优化方法;构造了基于LC梯形仿真的gm-C小波滤波器结构,利用优化算法求解最优频响特性的电路参数;构造了共享极点实现电路的gm-C复小波滤波器结构。(3)针对微体积、低功耗的应用要求,采用输入差分对和电流镜电路的简单结构设计跨导单元,降低失配、噪声等非理想因素的影响,利用低偏置电流实现pS量级跨导值;采用SMIC 0.18um CMOS工艺进行晶体管级设计,仿真结果表明100pS跨导单元的功耗仅为6pW。(4)基于临床痫样脑电数据,完成实小波和复小波痫样脑电检测实验;针对体积、功耗、检测灵敏度和在线数据缩减率等性能指标进行比较,优选出五阶gm-C小波滤波器作为痫样脑电在线检测电路的核心模块;仿真结果表明,实现尺度a=0.1的小波滤波器功耗仅需40pW;提出了痫样脑电检测算法的新方案,实验结果表明在灵敏度不低于80%的前提下,可将无线传送数据量减少50%。. 本项目的研究成果可直接应用于穿戴式无线动态脑电系统中,为癫痫病症的诊断提供最佳方案,具有重要的经济效益和社会效益。所涉及到的小波滤波器实现理论与设计方法可推广至心电等其它生物电信号的在线检测中。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
2

论大数据环境对情报学发展的影响

论大数据环境对情报学发展的影响

DOI:
发表时间:2017
3

一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能

一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能

DOI:10.16085/j.issn.1000-6613.2022-0221
发表时间:2022
4

跨社交网络用户对齐技术综述

跨社交网络用户对齐技术综述

DOI:10.12198/j.issn.1673 − 159X.3895
发表时间:2021
5

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

DOI:10.13465/j.cnki.jvs.2020.09.026
发表时间:2020

赵文山的其他基金

相似国自然基金

1

小波开关电流技术实现理论与方法

批准号:60876022
批准年份:2008
负责人:何怡刚
学科分类:F0402
资助金额:33.00
项目类别:面上项目
2

多通道任意长度小波滤波器组的优化方法研究

批准号:60875013
批准年份:2008
负责人:李东
学科分类:F0604
资助金额:30.00
项目类别:面上项目
3

基于相关频率调制和小波变换的多种燃烧排放污染气体的联合、在线检测方法研究

批准号:50376058
批准年份:2003
负责人:周洁
学科分类:E0604
资助金额:24.00
项目类别:面上项目
4

基于小波和神经网络的麻醉深度诱发脑电分析的研究

批准号:69871010
批准年份:1998
负责人:莫玮
学科分类:F0124
资助金额:12.00
项目类别:面上项目