集合论模型中的大基数与组合性质

基本信息
批准号:11401567
项目类别:青年科学基金项目
资助金额:22.00
负责人:吴刘臻
学科分类:
依托单位:中国科学院数学与系统科学研究院
批准年份:2014
结题年份:2017
起止时间:2015-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:彭银河
关键词:
连续统大基数力迫扩充无穷组合正规测度
结项摘要

The consistency and independency argument indicates that various types of set theoritical models possess distinct large cardinal and combinatorial properties. The study of such combinatorial properties in the presence of large cardinals plays an important role in justifying the choice of idealized set theoritical models. This may also provide further mathematical evidences and philosophical‎ reasoning for extending Hilbert's doctrine about Foundation of Mathematics. Three types of combinatorial properties to be studied are list as follows: First, investigate the large cardinal properties on small cardinals and their consequences, in particular their impact on the Continuum Hypothesis. Second, study the relationship between supercompact cardinals and the structure of the normal measures, including the number of the normal measures, the Mitchell order of normal measure and some other order structure. Third, explore the structure of uncountable linear order under forcing axioms, especially the relationship and claasification of the Countryman order and coherent order.

经由相容性和独立性论证,不同集合论模型中的大基数性质和组合性质具有不同的特点。对这些大基数影响下的组合性质的研究有助于研究者判断何为理想的集合论模型,从而为进一步拓展Hilbert的数学基础论提供佐证。我们将重点研究下列三大类组合性质。首先,研究小基数上的大基数性质的推论,特别是其对连续统假设的影响。其次,研究超紧基数对正规测度结构的影响,包括正规测度的计数,正规测度上的Mitchell序及其他一些序结构。最后,研究在力迫公理影响下的不可数线性序的分类问题,重点研究Countryman序和Coherent序的关系和分类问题。

项目摘要

本项目研究不同集合论模型中的大基数和组合性质。与合作者一起,在下面三个方面取得了进展:1)对小基数上的大基数性质,证明了否定连续统假设和半稳定集反射原理导出强树性质。2)对大基数上的组合性质,证明了I2、奇异基数假设和树性质的相容性。3)对小基数上的组合性质,证明了强染色性质Pr_0(omega_1,omega_1,n),并构造了L平方空间和L群。项目计发表学术论文4篇,接收1篇。项目成员多次应邀在国际会议上做学术报告。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
2

基于细粒度词表示的命名实体识别研究

基于细粒度词表示的命名实体识别研究

DOI:10.3969/j.issn.1003-0077.2018.11.009
发表时间:2018
3

圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察

圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察

DOI:10.3969/j.issn.1674-0858.2020.04.30
发表时间:2020
4

基于图卷积网络的归纳式微博谣言检测新方法

基于图卷积网络的归纳式微博谣言检测新方法

DOI:10.3785/j.issn.1008-973x.2022.05.013
发表时间:2022
5

多空间交互协同过滤推荐

多空间交互协同过滤推荐

DOI:10.11896/jsjkx.201100031
发表时间:2021

吴刘臻的其他基金

批准号:11871464
批准年份:2018
资助金额:54.00
项目类别:面上项目

相似国自然基金

1

大基数和高阶度论

批准号:11771050
批准年份:2017
负责人:施翔晖
学科分类:A0101
资助金额:48.00
项目类别:面上项目
2

与大基数相关的力迫法及其应用

批准号:11871464
批准年份:2018
负责人:吴刘臻
学科分类:A0101
资助金额:54.00
项目类别:面上项目
3

大基数及其相关问题的研究

批准号:19301030
批准年份:1993
负责人:张树果
学科分类:A0101
资助金额:2.20
项目类别:青年科学基金项目
4

资产数目与投资周期带有基数约束的投资组合优化

批准号:71201102
批准年份:2012
负责人:高建军
学科分类:G0102
资助金额:20.00
项目类别:青年科学基金项目