Pyrolysis of sludge to produce syngas (H2 and CO) is an effective way for resource reclamation. Microwave pyrolysis of sludge, with an inside-out heating mode, has more advantages than the traditional heating pyrolysis in both product recycling and energy utilization. However, for the complicated composition of sludge, the microscopic transformation of substance and the efficient matching of microwave energy field during the pyrolysis come to be the bottlenecks to limit the quality and energy efficiency of syngas generated. Based on the previous researches, this study uses large amount of water contained in sludge as the absorbing material and reaction medium, and introduces the combined CO2/H2O reforming technology into the microwave pyrolysis of sludge, in order to screen the key factors influencing the generation of high-quality syngas through analysis of pyrolysis reaction characteristics and optimization of reaction conditions. The production ways and mechanisms of hydrogen during pyrolysis are clarified by elemental transformation and the energy balances of pyrolysis reaction are constructed by simulating the micro-energy field. Through exploring the conversion and matching mechanism of energy during microwave pyrolysis, the macroscopic and microcosmic optimization of the production of high quality syngas is realized synergistically. This study analyzes the key scientific issues of microwave energy utilization and H2 generation, aiming to clarify the theoretical basis of sludge reclamation and propose a control strategy on microwave pyrolysis process that can realize the low energy consumption and high-efficient recycle of sludge.
污泥裂解制合成气(H2和CO)是其资源化的有效途径,微波以自内向外的加热方式在污泥裂解的产物资源化及能量利用效能等方面较传统加热具有优势。污泥成分复杂,其裂解过程中的物质微观转化途径及与微波能量场的有效匹配是影响合成气品质及能量利用效能的关键问题。本课题在前期研究基础上,利用污泥中含有的大量水分作为吸波物质和反应介质,在微波裂解过程中引入CO2/H2O联合重整技术,通过裂解反应特性研究及工艺条件优化,筛选污泥制高质合成气的关键因素,实现制高质合成气;通过元素迁移转化研究明晰裂解产氢的途径及机制,通过微观能量场协同模拟明晰裂解反应的能量平衡体系;明确微波裂解的能质转化规律及能量匹配调控机制,实现污泥制高质合成气的宏观微观协同优化。本项目旨在围绕微波裂解过程中的能量利用模式及其与氢气生成途径的关联等关键科学问题,明晰污泥资源化的理论基础,提出可实现污泥低能耗、高效资源化的微波裂解工艺调控策略。
热裂解技术是污泥资源化利用的有效途径之一。相较传统热裂解,微波热裂解因其由内而外的加热方式具有加热均匀、热裂解速率快、热量损失小等特点,可显著改善传统污泥热裂解过程存在的资源回收效率低、能量不集中等缺陷。然而,微波热解污泥制备生物气技术仍存在有机质转化率不高、合成气品质差以及能量利用效率低等问题。本项目在深入研究微波裂解制合成气反应特性的基础上,采用H2O/CO2联合重整等技术手段,对微波裂解污泥产生物合成气过程进行深度优化;同时,在筛选关键影响因素的基础上,通过污泥裂解反应特性及元素迁移研究,探索裂解过程H2、CO的产生途径;通过研究微波能量场分布规律以及污泥裂解反应过程中的能量平衡规律,以实现能量场的有效调控;最后结合微波作用下污泥裂解的能质转化规律,制定出可实现污泥低能耗、高效能源化回收利用的工艺运行调控策略,并为提高合成气品质,实现微波低能耗裂解污泥制得高质生物合成气奠定理论基础和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
混采地震数据高效高精度分离处理方法研究进展
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
夏季极端日温作用下无砟轨道板端上拱变形演化
异质环境中西尼罗河病毒稳态问题解的存在唯一性
微波与特征催化剂耦合强化CO2重整CH4制合成气的机理研究
微波裂解污泥制取生物燃料的反应动力学及能量场动态模拟研究
CO2/H2O电化学重整转化制取合成气阵列电极的构建及基础研究
微波场-水分子协同强化非常规裂解原料裂解的反应机理及调控机制