Intelligent devices are automated systems that have been fabricated based on the stimuli-responsive properties of intelligent materials. They are very sensitive to environmental signals, and thus enable controllable reconfiguration under certain stimulation. Currently, intelligent devices play a very important role in the field of military affairs, aerospace industry, modern medicine, and biology engineering. However, there exist an obvious “gap” between intelligent materials and intelligent devices, since current manufacturing technologies are relatively less developed for intelligent devices. Serious problems with respect to the poor compatibility between intelligent materials and their processing technologies, the lack of strategies that enable intelligentization of general material, fabrication and integration of intelligent devices, significantly limit the rapid progress of intelligent devices. To address the current challenges in the development of intelligent devices, we proposed in this project a new laser processing technology, called “dual-3D” femtosecond laser fabrication, for intelligent manufacturing at micro-nanoscale. The basic concept is to create an inhomogeneous 3D inside networks during the laser scanning of the entire 3D microstructures. Since materials with different properties show distinct response to environmental stimulations, the result microstructures with inhomogeneous properties would deformed in a controlled fashion. By precise design of both the 3D profile and the inside 3D networks of a typical polymer structures, an intelligent device that can perform desired tasks could be fabricated directly. Towards the further application of this technology in human-on-a-chip systems, we have to solve some scientific problems with respect to the lack of driving devices for dynamic stimulation of organ-on-a-chip systems. The development of “dual-3D” femtosecond laser fabrication technology would push forward the rapid progress of intelligent devices.
智能器件是一类基于智能材料对环境的感知、识别、判断能力而开发出的具有控制、执行、驱动等功能的智能化系统,在军事、航空航天、现代医学等领域发挥着重要的做用。然而,从智能材料到智能器件的关键环节——智能制造技术,目前仍面临与智能材料加工不兼容、材料智能化手段单一、难以实现三维器件制备/集成等一系列问题,这严重制约了智能器件的快速发展与广泛应用。针对智能微纳器件开发所面临的制备、集成难题,本项目提出利用飞秒激光“双三维”加工实现材料智能化、器件化的新思想。在激光直写制备微纳结构三维外部轮廓的同时,精确调控其三维内部材料特性,利用非均匀材料特性对刺激信号的响应差异所产生的可逆形变,实现智能器件的可控驱动。进一步,面向器官芯片应用,重点解决现有器官芯片中微纳驱动部件缺失的关键问题,实现智能器官芯片开发。掌握飞秒激光加工智能器件的核心工艺,开拓其前沿应用,为国家制造强国战略计划贡献力量。
基于智能材料的智能微系统对环境敏感、无需电源供电且具有执行功能,在航空航天、军事国防、生物医学等领域用途广泛,是国家迫切需要的先进装备。然而,智能材料的器件化缺少关键技术支撑,成为制约智能系统开发的屏障。本项目基于飞秒激光双光子聚合制造技术,提出了激光“双三维”调控实现材料智能化、器件化的新思想。系统地研究了聚合物空间网络密度的激光程序化调控、智能微纳结构制备、蛋白质微纳智能结构pH值响应及刺激响应智能微纳驱动芯片的加工与集成等四方面内容。形成了激光诱导光聚合物智能化及可控刺激响应驱动的先进加工技术体系。进一步,通过智能可驱动微结构与微流控芯片的集成,实现了片上微结构的可控驱动,解决现有器官芯片中微纳驱动部件缺失的问题。项目研制了一系列微流控芯片片上可驱动部件,包括溶剂响应微机械手、pH值响应的微骨骼肌肉系统、pH响应的可变焦复眼等。在项目的资助下,发表SCI论文20篇,申请发明专利3项,培养硕士研究生4人,博士研究生3人,系列工作为研制智能化可驱动微器件储备了核心技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
针灸治疗胃食管反流病的研究进展
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于飞秒激光微加工的三维金属微纳结构制备方法基础研究
基于飞秒激光微纳加工的多功能微流控芯片催化反应器的研制
三维微纳智能器件的飞秒激光增减材直写技术研究
基于激光微加工技术的微纳流体系统的研制