Lab-on-a-chip (LoC) system is an integrated reaction and analysis platform which usually contains various functional components including reaction,seperation, analysis and detection devices. Such a highly integrated microfluidic chip shows a lot of unique advantages as compared with that of macroscopic reactor. For example, low reactants consumption, high safety, high efficiency and environmental friendliness. Therefore, the investigation on LoC system has great significance for energy saving, environmental protection and sustainability. However, due to the technical limitation, currently available LoC systems allow only simple reactions or analysis. It is still challenging to integrate multifunctional components, for instance, catalytic microreactors, with the whole chip. In this project, we propose the fabrication of catalytic microreactors by femtosecond laser processing. The designed micro-nanostructure inside a microfluidic channel could efficiently immobilize various catalysts, forming a catalytic microreactor. Moreover, by using the femtosecond laser micronanofabrication, microheater, micromixer SERS monitor and various microdevices could be integrated into the microreactor, which, therefore, allows to handle complex chemical or biological reactions in a controlled fashion. In this work, we will develope a novel processing technique for chip functionalization, especially with regard to catalysis, by solving the key problems including the fabrication of refined 3D micronanostructures on nonplanar substrate, precise control of catalytic reactions and the investigation on catalytic mechanism inside a microfluidic channel. The work would open up a new way to on-chip catalysis and contribute greatly to the development of LoC systems.
微流控芯片实验室是把生物和化学实验所涉及到的反应、筛选、分离、检测等基本操作单元集成到芯片上的微反应系统,具有试剂消耗少、高效、安全、环保等一系列优点,被Nature杂志称为这一世纪技术,对于中国社会的节能减排的目标具有特殊重要的意义。然而,现有微流控芯片反应器通常由简单的微流体通道组成,不能进行复杂多样的生物、化学催化反应,催化剂固载以及催化反应条件的精细操控是高性能微流控芯片反应器制备的一大难点。为了解决这个问题,本项目在申请团队良好的工作基础上,提出利用飞秒激光微纳加工技术在微流通道内构建三维微纳结构固载催化材料,制备和集成微加热器、微搅拌器等辅助操作单元,实现反应条件的准确控制。通过解决复杂通道衬底上精细三维结构的制备、微流控芯片中催化反应操控等关键科学问题,掌握芯片催化反应器制备的核心工艺,阐明芯片中催化反应的特点,开拓其前沿应用,为微流控芯片技术的跨越发展作出原创性贡献。
微流控芯片实验室是把生物和化学实验所涉及到的反应、筛选、分离、检测等基本操作单元集成到芯片上的微反应系统,具有试剂消耗少、高效、安全、环保等一系列优点,被Nature杂志称为这一世纪技术,对于中国社会的节能减排的目标具有特殊重要的意义。然而,现有的微流控芯片微反应器都是由简单的流路通道组成的。这些微通道反应器虽然可以满足一些简单的合成与分析检测,却无法实现复杂的生物、化学反应,催化剂固载以及催化反应条件的精细操控是高性能微流控芯片反应器制备的一大难点。此外,鉴于微流控芯片通道的非平面结构,现有的平面工艺难以实现在微流控芯片内各类反应操控器件的灵活集成。微流控芯片中功能元件的集成是制备催化微反应器的另一难点。为了解决上述问题,本项目提出利用飞秒激光微纳加工技术制备微流控催化反应器的新思路。项目研究了微流控芯片通道内三维微结构的激光加工工艺、催化材料固载、微催化反应器的功能元件集成和微反应器中催化性能等方面内容。重点解决复杂通道衬底上精细三维结构的制备、微流控芯片中催化反应操控等关键科学问题。取得了一系列研究成果,具体包括1、提出了激光光动力组装纳米材料的新方法,突破了微流控芯片新材料固载和功能部件集成的难题;2、建立了微流控芯片催化反应原位SERS检测新方法,阐明芯片中催化反应的特点。飞秒激光独特的加工工艺为微流控芯片中多功能催化微反应器的制备提供了可行性,开拓了其前沿应用,为微流控芯片技术的跨越发展作出原创性贡献。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
中外学术论文与期刊的宏观差距分析及改进建议
基于飞秒激光双三维加工技术的智能微纳器件的研制
三维集成PCR微流控芯片的飞秒激光微纳制备基础研究
基于飞秒激光微加工的三维金属微纳结构制备方法基础研究
微流控多功能检测芯片