All the Triboelectric nanogenerators (TENGs) reported so far have been designed and fabricated according to the different capacities of bounding surface electrons for dissimilar materials. However, mechanoradical triboelectric nanogenerators (MRTENGs) which is designed according to a novel mechanoradical mechanism in a homogeneous material, have not been investigated yet. Thus, this project is focused on designing a new kind of MRTENGs based on mechanoradical mechanism, and verifying this mechanism. The fabrication procedure is described as follows: aerogels with good mechanical property served as scaffold are coated and covered with an effective mechanoradical polymer, and then covered with electrods to obtain MRTENG with a sandwich structure as a whole. To improve the MRTENGs’ performances, the mechanoradical efficiencies of several kinds of polymers will be investigated, and more effective polymer will be designed and prepared on purpose. Besides, more excellent aerogel will be well-selected on the basis of their mechanical performances. Another important aspect is to systematically verify the triboelectric MR mechanism. Also, the practical applications of MRTENGs will be investigated. This research will enrich the designing routes for TENGs. The relatedly systematical studies of the mechanism and applications will lay a certain foundation for MRTENGs’ research.
目前所报道的摩擦电微电机TENGs均是利用异种材料对表面电荷束缚能力差异而设计的,而基于同种材料内部通过机械力致自由基机制设计MRTENGs尚未见文献报道。为此,本课题设计一类全新机械力致自由基驱动机制的MRTENGs,并验证其机械力致自由基机制。其制备组装思路为在机械稳定性良好的气凝胶骨架上涂覆高效机械力致自由基高分子,随后覆以电极完成MRTENG组装,其整体为三明治结构。为了提高MRTENGs性能,本课题将研究不同种类高分子机械自由基的效率,并制备高效机械力致自由基高分子材料;筛选机械性能优良的气凝胶骨架;重点验证摩擦电产生的MR机理;并研究所组装的MRTENGs实际应用效果。本课题研究将会成为丰富TENGs设计机制,相关机理以及应用的系统研究将会为基于机械力致自由基机理的MRTENGs研究奠定一定的基础。
随着人类社会经济的飞速发展以及不可再生石化能源的日益消耗,人类面临着前所未有的能源危机和环境问题。为了解决这一困扰,人们不断探寻可再生清洁能源(如光能、热能、机械能等)的利用途径。近年来,能够将环境中无处不在的微量机械能转化成电能的压电微电机(Piezoelectric nanogenerators (PENGs))和摩擦电微电机(Triboelectric nanogenerators (TENGs))成为了研究的热点,尤其是选材广泛的 TENGs 因具有更大的普适性和更加优异的机械能电能转化效率,受到了能源转换领域研究者的广泛青睐 [1-5] 。本课题旨在设计组装一类机械力致自由基(Mechanoradical (MR))机制的 MRTENGs,并研究其机械力致自由基机理,为自由基机制柔性 MRTENGs 的研发奠定基础。主要成果概述如下:(1)制备了一类多孔相聚偏二氟乙烯气凝胶,与纯PVDF膜相比,多孔气凝胶膜的摩擦电性能提高了3倍,功率密度提高了8.2倍。由多孔聚偏氟乙烯气凝胶制成的新摩擦纳米发电机显示出优异的能量收集能力,在0.08 MPa下产生高达90 V的电压,并可以轻松点亮30个蓝色LEDs。(2)本研究不仅展示了一种新型的高孔隙率和柔性的摩擦纳米发电机,而且为能量收集和自供电传感装置的改进、制造和应用提供了新的研究途径;(3)制备了聚丙烯酸酯为机械力致自由基材料,然后将涂覆好的羧甲基纤维素气凝胶薄膜夹在两层薄的聚丙烯酸酯(丙烯酸丁酯和甲基丙烯酸丁酯)(P(BA-BMA)薄膜)之间,构筑柔性的紧凑型机械力致自由基的摩擦电纳米发电机;(4)基于机械力致自由基的摩擦纳米发电机不仅表现出很高的耐用性和稳定性,而且在3D器件的输出电压U、电流I信号基本保持不变。这种新的摩擦电纳米发电机可能为设计其它高性能的、适合大规模制造的能量转换多孔气凝胶薄膜开辟新的途径。这些研究成果发表SCI、EI论文篇,申请专利件;培养硕士生5人;完成了项目既定的研究工作和任务。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
钢筋混凝土带翼缘剪力墙破坏机理研究
基于细粒度词表示的命名实体识别研究
滚动直线导轨副静刚度试验装置设计
铁电陶瓷电致断裂机理与力-电耦合畸变增韧
微机械加工静电式微电机的研究
稀土超磁致驱动微电机的结构、机理与运动控制研究
考虑摩擦力的微型机械动力学研究