High performance MEMS gyroscopes are strongly needed in many areas such as anti interference of satellite aided navigation and mini unmanned combat platform. The nested rings MEMS gyroscope became one of the most popular novel MEMS gyroscopes in recently. The best reported bias stability of this gyroscope reached 0.003°/h. The nested rings MEMS gyroscope is formed by a series of concentric rings, thus its inertia mass, quality factor and detecting efficiency are improved significantly. By applying mature planar MEMS technology, this gyroscope is much easy to be batch fabricated. The nested rings resonator is quite complex, and has large numbers of design variable. Many different resonators can be developed by changing the structure size, shape and topology. So exploring the vibration coupling mechanism of the nested rings and obtaining the structure optimizing design theories of the nested rings structure are very important in the research of the nested rings gyroscope. This project intends to research the vibration coupling mechanism of the nested rings, understand how the performance of this gyroscope is affected by the ring thickness, the shape of connecting beams between rings and the topology of the nested rings structure. Novel optimizing methods of the structure dimension, shape and topology will be proposed. Finally, the design, fabrication and measurement of the nested rings MEMS gyroscope samples will be completed. This project will provide theoretical support for the development of the high accuracy nested rings MEMS gyroscope.
卫星导航抗干扰辅助、微小型无人作战平台等领域对高性能MEMS陀螺需求迫切。嵌套环式MEMS振动陀螺是最受关注的新型微陀螺之一,国外报道的零偏稳定性达到0.003°/h。该陀螺通过将多个半径递增的振动环同心嵌套耦合,显著增大了惯性质量、品质因数和测控效率,并采用成熟的平面微加工工艺制造,技术成熟度高。嵌套环式谐振结构复杂,设计变量多,通过改变尺寸、形状、拓扑能够发展出很多不同结构。探索嵌套环式结构内部振动耦合机理,掌握其结构优化设计理论与方法,是开展该类陀螺自主研制面临的重要理论问题。项目拟重点研究嵌套环振动耦合机理与动力学模型,掌握嵌套环壁变化、环间周期分布支撑梁形状变化、嵌套环式谐振结构拓扑变化对陀螺性能的影响规律,从结构尺寸、结构形状和结构拓扑三个层次提出嵌套环式谐振结构演化和优化的新方法,完成陀螺样机的优化设计、加工工艺和测试分析,为高性能嵌套环式MEMS振动陀螺研制提供理论支持。
陀螺仪是测量载体相对惯性空间旋转运动的传感器,是运动测量、惯性导航、制导控制等应用领域的核心器件,在精确打击、无人作战、自主导航以及航空航天等领域中具有非常重要的应用价值。本项目瞄准高精度MEMS陀螺仪领域关键问题,以突破高精度嵌套环式MEMS振动陀螺核心技术为主要目标,开展并完成了嵌套环式MEMS振动陀螺的动力学建模、谐振结构关键参数综合优化设计、谐振结构拓扑优化、高精度加工工艺、误差修调和测控电路技术研究,突破了嵌套环谐振结构参数多目标综合优化设计、高精度加工、圆片级真空封装、模态精密修调等关键技术,并且发明了新型蜂巢式微机电陀螺,实现了高精度微机电陀螺谐振结构的自主创新。研制的陀螺样机经过第三方测试,主要性能为量程±200°/s,零偏稳定性0.069°/h,零偏不稳定性达0.015°/h。在Nature Communications、Microsystem&Nanoengineering(封面论文)、PRApplied、APL、JMEMS等期刊发表论文18篇,其中SCI检索15篇;在IEEE MEMS、IEEE SENSORS、TRANSDUCERS等国际知名会议上发表EI检索论文7篇,获国际会议优秀海报奖2项,行业优秀论文2篇。获国家发明专利授权3项。培养博士毕业生2人,硕士毕业生3人,正在培养在读博士2人,在读硕士3人。以本项目研究成果为主要支撑,获得国家重点研发计划项目课题1项,装备预研项目1项,军委科技委国防科技基金项目1项。项目完成了全部预期任务,实现了预期目标,并为我国高精度MEMS振动陀螺的发展提供了有力的基础支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于分形L系统的水稻根系建模方法研究
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
慢衰减抗振动MEMS半环谐振陀螺及其制造方法研究
频率输出式MEMS振动陀螺的基础理论与关键技术研究
高灵敏多层式壳体振动陀螺的设计理论与关键技术研究
波瓣式微壳体振动陀螺结构设计理论及其制造方法研究