Recently, graphene, a novel single layer two dimensional nanomaterial with planar honey-comb lattice structure, owns unique mechanical, physical, chemical and electronic properties, has received much attention in the fields of material science and chemistry to biology. The present program is focusing on the fundamental and interdisciplinary points of synthesis and functionalization of graphene based nanomaterials, constructing the interfacial biorecognition platform, and developing the electrochemical techniques as well as biosensor applications in life science. We will carry out the project by preparation of functional graphene nanomaterials with remarkable-performances to build up highly active and efficient biorecognition electrode interface associated with DNA, protein, peptide, etc.. The graphene/biomolecules interface could respond specifically to the substrates and corresponding targets, exhibiting expected catalytic effect and biorecognition ability. We will also investigate novel electrode assembly techniques based on the good biocompatibility and intelligent structure of graphene nanomaterials, explore the transduction mechanism from biomolecules recognition to electrochemical signal output, and build up electrochemical transducers for sensitive, selective and high-through biosensing applications. Finally, we will develop novel strategies and techniques as well as devices with excellent performances based on the interfacial biomolecular recognition, electrochemical and bio-catalytic amplification and signal transformation. The current project would be promising to address the significant issues in life science, such as early diagnosis, prevention and therapy of serious diseases including cancers, diabetes, and cardio-cerebral-vascular diseases.
石墨烯由于其优异的光、电性能及其结构、性质的可塑性,使得它迅速成为倍受瞩目的国际前沿和研究热点,在材料科学、化学和生物学等领域引起了广泛的研究兴趣。本研究项目以功能化石墨烯纳米材料合成、界面生物分子识别和电化学技术、生物传感分析研究为主题,从石墨烯的合成和功能化出发,制备性能优良的石墨烯类似物;并基于其优良的生物相容性来构建具有生物活性和分子识别功能的新型石墨烯生物纳米复合物,发展电极表面组装技术,构筑具有高度生物特异性和生物催化功能的纳米生物电化学传感界面,发展高选择性、高灵敏度和高通量的生物电化学换能器,建立研究生物分子识别,催化和传感及其电化学信号转换机制的技术平台,用于解决生物医学分析技术中的瓶颈问题,并发展高灵敏度、高选择性的生物传感新方法、新技术与新器件,为关系到国计民生的重大疾病的早期诊断与预防开拓新思路,提供新方法和新技术的后备支持。
石墨烯由于其优异的光、电性能及其结构、性质的可塑性,使得它迅速成为倍受瞩目的国际前沿和研究热点。然而功能化石墨烯纳米生物界面的构造、石墨烯纳米结构界面上生物分子的空间构象和活性的影响、界面生物分子识别和信号转换、以及器件微型化等方面的研究仍然非常缺乏。在基金委重点项目支持下,我们在石墨烯生物功能界面的构建及生物传感领域开展了深入系统基础性研究工作,提出了钠氨还原石墨烯的可控合成和功能化新方法,发展了结构可控、具有高效光电转换性能石墨烯复合纳米结构的新方法,提高了石墨烯的电子转移和电催化性能;建立了基于石墨烯的核酸、酶和活细胞内ATP等小分子的实时成像分析方法。该项目已发表SCI论文79篇(其中IF>10论文,10篇;IF>7论文,35篇;IF>5论文,60篇),包括在Nature Commun.,Nature Protocol,J. Am. Chem. Soc.(2篇),Angew. Chem. Inter. Ed.(2篇),Anal. Chem. (17篇),Chem. Sci. (7篇),Adv. Mater.,Small (2 篇),J. Mater. Chem. A,Nano Res.,Chem. Commun. (4 篇),Eur. J. Chem. (3篇),ChemSuSChem.,Nanoscale (8篇)等国际学术刊物,其中Angew. Chem. Inter. Ed.,Adv. Mater.和Eur. J. Chem.文章分别为期刊封面或后封面文章,得到ChemistryViews website的重点评介。受邀在著名学术期刊Acc. Chem. Res., (IF 22.268),Chem. Soc. Rev. (IF 38.618), Energy Environ. Sci. (IF 29.518),Small,Trend in Analytical Chemistry, Nanoscale等发表相关综述论文。该项目执行期间,申请中国发明专利5项。获国家自然科学奖二等奖(石墨烯的电分析化学和生物分析化学研究,2015年),获基金委创新团队项目资助(2016),1人获基金委优青资助(2016),1人入选英国皇家化学会会士,1人被评为北京市优秀教师,多次入选美国汤姆路透集团全球高被引科学家。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
仿生功能化石墨烯生物传感界面的构建及其在农药残留检测中的应用研究
表面功能调控的石墨烯三维组装体构建生物传感
石墨烯量子点-核酸适体纳米生物界面构建与生物传感研究
仿生纳米界面的构建及生物医用传感研究