In order to promote the driving range as well as dynamic performance of the electric vehicle, applying a transmission on the driveline system has become an important development direction. This project proposed a novel 2-speed planetary electric driveline system on this issue. Under the condition that drive motor operates on high speed, responses fast and has no torsion damper directly connected in the powertrain, the backlash and flexibility of the gearbox causes jerk and torsional vibration easier than that of traditional driveline, especially during gearshift or tip-in tip-out process. Aiming at improve the riding comfort of the electric vehicle, this project studies several key control problems of EV motor-transmission centralized driving system, which mainly contain the following contents. 1) Taking non-linear backlash and shaft flexibility into account, build the dynamic model of the 2-speed planetary electric driveline system as well as the power shift actuator system, and study on the torsional vibration problems. 2) Study on the estimation method of the force and torque in the non-linear electromechanical coupling system. 3) Multi-objective nonlinear dynamic optimization of the non-power-interruption motor-transmission driving system. 4) Based on the precise coordination control of the drive motor and power shift system, study on the anti-jerk control method under the condition of transient process such as power shift. Result of this research will provide theoretical support for system design and optimal control of EV motor-transmission centralized driving system.
为进一步提升续驶里程和动力性,电驱动系统采用变速器方案成为纯电动汽车发展的重要方向之一。本文针对该趋势提出一种新型两档行星齿轮式电驱动系统。但在电机驱动转速高、转矩响应速度快,且传动系统取消了动力缓冲装置的条件下,变速箱齿轮间隙和传动轴弹性变形比传统汽车更易引发传动系统冲击及扭转振动,该问题在换挡和急加急减速等瞬态工况下尤其突出。为优化两档式电驱动系统平顺性,本文针对以下问题进行研究:1)考虑齿轮间隙及传动轴弹性变形,建立两档行星齿轮式电驱动系统及其动力换挡执行机构的非线性动力学模型,研究系统扭转振动问题;2)研究该非线性机电耦合系统的力矩观测方法;3)研究两档行星齿轮式电驱动系统的动力换档过程及动态优化目标;4)针对变速器动力换档等瞬态工况,基于对驱动电机和换档执行机构的精确协调控制,研究传动系统冲击及扭转振动的主动抑制方法。研究工作将为两档式电驱动系统设计与整车平顺性控制提供理论支撑。
针对电机-变速器集中驱动系统在应对复杂车辆行驶工况下平衡整车各项性能的最优控制及其可实现性难题,开展电机-变速器集中驱动系统的多目标非线性动态优化控制方法以及面向实际应用的实时控制策略研究。.提出面向动力换档过程冲击抑制控制及多目标动态优化控制的两档行星齿轮式电驱动系统非线性系统动力学模型建模方法。基于变速箱功率传递路径,对其动力学模型进行分析,以获取换档过程中关键元件之间的运动关系、力学关系,为后续的控制方法设计提供理论基础。.揭示两档行星齿轮式电驱动系统的冲击扭振机理,设计该非线性机电耦合系统中的力/力矩观测方法。结合摩擦元器件的物理模型及前文所述执行机构原理及电气方案,设计了基于物理模型的摩擦元件力矩估计方法。通过仿真与实验验证,证明了力矩估计的准确性。.提出驱动电机和换挡执行机构在动力换档瞬态工况中的精确协调控制策略。结合电驱动系统扭矩响应快速及惯量小的特性,设计出新的基于驱动电机主动调节的Clutch-to-Clutch控制方法,将所提出的方法应用于正向驱动加速、紧急制动能量回收两种对动力中断要求较高的工况中,进行了仿真验证与试验验证,证明了所设计的换档方法的有效性。基于滚动优化的思想,结合动态规划的方法,提出了一种考虑前方道路曲率变化的多档位电动汽车档位最优控制策略。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
少齿差变齿厚RV行星精密传动研究
双曲柄输入平行轴式少齿差行星齿轮传动研究
考虑空间因素的航天器变齿厚行星传动耦合行为机理研究
直齿锥齿轮端面滚齿成形机理与齿面控制理论