Directed fabrication of activated carbon material for a certain field via pore size distribution control technology has become a research hotspot in the development of activated carbon. Currently, the adsorption capacity and the pore structure of the existing viscose-based activated carbon fibers (ACF) cannot meet the requirements for organic solvent recovery satisfactorily. Phenolic resin-based ACF has excellent properties, but few research has been done on its pore structure control mechanism. In consideration of current situation, phenolic resin with high carbon yield is used as the carbon precursor in this research. Firstly, the difficult process control problem for melt spinning of the phenolic resin will be overcome and modified phenolic fiber with good pore-forming property will be prepared by using blending melt spinning technology. Moreover, the process control mechanism for melt spinning of the phenolic resin will be thoroughly studied by clarifying the relationships between the raw material, the melt spinning process and the structure as well as the properties of the modified phenolic fiber. Then, the difficult pore structure control problem for phenolic resin-based ACF will be conquered through the combination of two pore size distribution control technologies, which are activation technology and polymer hybrid carbonation technology. A unique macropore-mesopore-micropore hierarchical pore structure will be established within phenolic resin-based ACF and the pore structure control mechanism will be investigated in depth. Finally, high performance phenolic resin-based ACF orienting to meet the requirements of organic solvent recovery will be prepared via process optimization. All in all, this study aims to further expand the application of phenolic resin-based ACF in the field of organic solvent recovery, while enriching and perfecting the relevant theoretical system of pore structure control for phenolic resin-based ACF.
通过孔径分布调控技术获得某领域专用活性炭材料已成为当前活性炭开发的研究热点。本项目针对国内现有有机溶剂回收专用粘胶基活性炭纤维(ACF)吸附能力和孔结构无法满足使用要求而性能优异的酚醛基ACF孔结构调控机理研究较为缺乏的现状,以碳收率较高的酚醛树脂为碳前躯体,首先攻克酚醛树脂熔融纺丝过程控制的难题,采用共混熔融纺丝技术制备出易于活化成孔的改性酚醛纤维,并通过原料-工艺-结构-性能间的关系的建立对熔融纺丝过程控制机理进行深入研究;然后综合采用活化法和聚合物混合碳化法两种孔径分布调控技术,攻克酚醛基ACF孔结构调控的难题,在酚醛基ACF内部构建大孔-介孔-微孔多级孔结构,并对其孔结构调控机理进行深入研究;最后通过工艺优化设计,定向制备出满足有机溶剂回收使用要求的高性能酚醛基ACF。旨在对酚醛基ACF孔结构调控相关理论体系进行丰富和完善的同时,进一步拓展酚醛基ACF在有机溶剂回收领域的应用。
本项目针对目前国内现有的有机溶剂回收专用的粘胶基活性炭纤维吸附能力和孔结构仍无法满足使用要求的问题,以易于碳化活化且碳收率较高的酚醛树脂为碳前躯体,通过共混熔融纺丝技术,综合采用多种孔径分布调控技术,开发出满足有机溶剂回收使用要求的大孔-介孔-微孔多级孔结构酚醛基活性炭纤维(PACF),并对其孔结构调控机理进行研究。此外,开展了酚醛基活性炭纤维应用拓展研究。 . 主要研究内容和结果包括:突破酚醛树脂熔融纺丝过程控制技术,采用共混熔融纺丝法制备出易于活化成孔的改性酚醛纤维并对其结构和性能进行表征,完成原料-工艺-结构-性能间关系的构建;在对酚醛基活性炭纤维孔结构调控机理进行研究的基础上,分别采用KOH化学活化法和水蒸气物理活化法制备出一系列酚醛基活性炭纤维,完成酚醛基活性炭纤维的可控制备、改性与表征,并对其吸附性能及吸附机理进行研究;通过工艺优化设计定向制备出满足有机溶剂回收使用要求的大孔-介孔-微孔多级孔结构的高性能酚醛基活性炭纤维,通过与企业开展深度产学研合作,完成水蒸气活化酚醛基活性炭纤维的中试生产,并进行了有机溶剂气体吸附回收效果实测验证。. 此外,根据声波传播基本理论,结合圆管理论模型,以活性碳纤维毡内部微孔通道为基础,确定活性碳纤维材料微孔中空气有效密度和有效压缩模量,建立了酚醛基活性碳纤维毡声学特征参数理论模型,并进行了实测验证。另外,还将新型高效吸附剂酚醛基ACF和目前较常用的高效光催化剂纳米TiO2同时引入到三维石墨烯立体结构中,将吸附技术与光催化技术相结合,开发出一种新型的高性能石墨烯/活性炭纤维/纳米TiO2三维复合光催化气凝胶,并将其用于染料废水的降解处理。. 本项目研究成果在对酚醛基活性炭纤维孔结构调控相关理论体系的进行丰富和完善的同时,进一步拓展了酚醛基活性炭纤维在有机溶剂回收专业领域的应用,此外还扩展了对酚醛基活性炭纤维吸声性能和吸附-光催化协同利用的研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
不同改良措施对第四纪红壤酶活性的影响
有序大孔-介孔-微孔多级孔分子筛催化剂的设计合成及应用
具有微孔、介孔和大孔的多级孔MOF材料的设计合成与应用研究
孔分布集中、孔尺寸精确调控的酚醛树脂基微孔炭设计、合成及其离子液体超电容机制研究
构建介孔/大孔镁硅活性支架材料调控细胞/组织再生研究