Seizure-induced mitochondrial damage makes epileptic neurons more sensitive to injury. Therefore, Timely removal of damaged mitochondria is important for neuronal survival in epilepsy. Appropriate mitophagy can selectively remove damaged mitochondria to maintain the steady-state intracellular environment. However, the function and mechanism of mitophagy in seizure-induced neuronal injury is still unknown. Recent studies have revealed that mitochondrial fusion and fission is closely with mitophagy. Our previous study also found that the expression of the mitochondrial fission protein Drp1(Dynamin-related protein 1,Drp1)and mitophagy were both significantly increased in hippocampus of epileptic rats. So we speculate Drp1 may affect the development of epilepsy by regulation of mitophagy. Using in vitro primary cultured hippocampal neuron epileptic discharge and in vivo PILO(pilocarpine, PILO)-induced rat model of temporal lobe epilepsy, We will detect the effect of Drp1 on mitophagy, mitochondrial injury and apoptosis by molecular biology, transmission electron microscope, and Laser scanning confocal technology by constructing adnoviral vectors to regulate the expression of Drp1. In addition, we will further prove the signaling cascade of Drp1 by regulation of autophagy (induction or inhibition of autophagy) and mitochondrial permeability transfer (open or inhibition of mPTP). Taken together, this study will clarify the molecular mechanism of epileptic neuronal injury through new viewpoint and provide new targets for treatment of epilepsy.
癫痫发作后线粒体受损导致神经元对痫性损伤更敏感,及时清除受损线粒体对神经元存活是至关重要的。适当的线粒体自噬可以选择性清除受损线粒体以维持细胞内环境稳态,但线粒体自噬在癫痫神经损伤中的作用及机制目前并不清楚。最近研究发现线粒体融合分裂与线粒体自噬有密切关系,我们前期研究也发现癫痫大鼠海马线粒体分裂蛋白Drp1和线粒体自噬水平均明显升高,因此推测Drp1可能通过对线粒体自噬的调控进而影响癫痫的发生发展。为了证明这一假说,我们将利用体外培养海马神经元癫痫放电及PILO诱导的大鼠颞叶癫痫模型,构建腺病毒载体干预Drp1表达,采用分子生物学、透射电镜及激光共聚焦等技术观察对线粒体自噬、线粒体损伤和细胞凋亡的影响。再给予调控自噬(自噬诱导剂或抑制剂)和线粒体通透转运(开放或抑制mPTP)干预,进一步证明Drp1发挥作用的信号级联。本课题将从新的视觉阐明癫痫神经损伤的分子机制,为癫痫治疗提供新的靶点。
癫痫发作后线粒体受损导致神经元对痫性损伤更敏感,适当的线粒体自噬可以清除受损线粒体以维持细胞内环境稳态。最近研究发现线粒体融合分裂与线粒体自噬有密切关系,本研究利用颞叶内侧癫痫手术切除标本、体外培养海马神经元癫痫放电及PILO诱导的大鼠颞叶癫痫模型,采用线粒体分裂蛋白Drp1特异性抑制剂mdivi-1及构建腺病毒载体干预Drp1表达,采用分子生物学、透射电镜等观察对线粒体自噬、氧化应激、内质网应激和细胞凋亡等影响,深入探讨了线粒体分裂在癫痫神经损伤中的作用及机制。课题进展顺利,相关成果已以第一作者发表SCI文章3篇,中文核心文章3篇,通讯作者发表SCI文章2篇,中文核心文章1篇,研究结果如下:.1. 收集30例行癫痫根治术难治性颞叶内侧癫痫患者及5例非颅脑外伤致死尸检者的颞叶内侧组织标本,发现:.(1)颞叶内侧癫痫患者术后癫痫灶组与灶周组及尸检对照组相比,致痫灶HE染色可见明显的神经元缺失和星形胶质细胞增生、肥大;.(2)癫痫灶组线粒体融合蛋白Mfn1和Mfn2表达下降,线粒体分裂蛋白Drp1和Fis1表达均升高;.(3)灶周组与尸检对照组相比Mfn1/2及Drp1和Fis1表达无明显变化。.2. 在PILO诱导急性癫痫大鼠模型中,发现胞浆Drp1含量减少,而线粒体Drp1含量增加,应用不同剂量mdivi-1抑制线粒体分裂发现:.(1)电镜下发现线粒体分裂明显受到抑制,且Western blot证实线粒体Drp1含量显著下降,证实mdivi-1可有效抑制颞叶癫痫大鼠海马神经元的线粒体分裂;.(2)mdivi-1可以显著降低自噬体膜标志性蛋白质LC3II、beclin1表达,提示抑制线粒体分裂可能通过减轻线粒体自噬而发挥神经保护作用;.(3)mdivi-1可以通过抑制细胞色素C释放、AIF核转移和增加抗凋亡蛋白Bcl-2表达水平及降低促凋亡蛋白Bax表达水平而发挥抗细胞凋亡作用,并且其保护作用呈剂量依赖性。.3. 在无镁诱导海马神经元癫痫模型中,构建腺病毒载体干预Drp1表达后发现:.(1)降低Drp1表达可通过缓解氧化应激、内质网应激和增加线粒体膜电位而发挥神经保护作用;而升高Drp1表达则增加氧化应激、内质网应激和降低线粒体膜电位而发挥神经损伤作用。.综上所述,本课题深入研究了Drp1调控的线粒体分裂在癫痫神经损伤中的作用及机制,为抗癫痫治疗提供了新靶点。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
基于SSVEP 直接脑控机器人方向和速度研究
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
Miro调控的线粒体移动在癫痫神经损伤中的作用及机制
MICU1调控的MCU摄入线粒体钙离子途径在癫痫神经损伤中的作用及机制
FAM134B调控的内质网自噬在癫痫神经损伤中的作用及机制研究
Drp1调控的线粒体自噬在糖尿病肾病中的作用及机制研究