The photo-biochemical conversion system of straw biomass has high solid phase, easy to crust, and successive barriers of light-heat-mass transfer, thus affecting system hydrogen yield potential and transfer properties. To address the issues, the straw biomass photo-biochemical conversion bio-hydrogen production process under source-triggerred perturbance will be taken as object of study, multi-scale analysis and numerical modeling method will be adopted to investigate the influence of source-triggerred perturbance on the enhancement characteristics of interphase transfer and hydrogen producing in the process of straw biomass photo-biochemical conversion bio-hydrogen production. The influence rule of perturbance on the evolution process of the instability flow, light-heat transmission behavior, microorganism growth and hydrogenation kinetics will be analyzed. The opitmal source-triggerred perturbance behavior and regulatory mechanism will be determined. Then, in addition, the project will be expected to find out the dynamic response of the light-heat-mass transfer distribution to source-triggerred perturbance. The light-heat-mass transmission and transformation synergistic matching law of the straw biomass photo-biochemical conversion bio-hydrogen production process under source-triggerred perturbance will be revealed. The light-heat-mass transfer behavior in the process of photo-biochemical conversion bio-hydrogen production under source-triggerred perturbance will be optimized. The improvement of the interphase transmission performance and hydrogen producing enhancement in the process of straw biomass photo-biochemical conversion bio-hydrogen production will be realized. Finally, the mechanism model of light response, dynamic thermal characteristic model, and comprehensive modeling of the kinetics of bio-hydrogen production under the considering of source-triggerred perturbance will be established. These findings will be of great significance to the large-scale biochemical transformation of straw biomass, so as to provide a scientific basis for the construction of a stable and efficient photo-biochemical conversion bio-hydrogen production system.
针对秸秆类生物质光生化转化体系高固相、易结壳、光热质传递屏障多等问题,以有源扰动下秸秆光生化制氢体系为研究对象,采用多尺度分析和数值模拟方法,研究有源扰动对秸秆光生化制氢体系内相间传递及产氢的强化,分析扰动对生物质光合产氢料液的流态失稳过程、光热传递行为、微生物生长与产氢动力学特性的影响规律,确定最佳有源扰动行为及调控机制,项目预期将探明光热质传输分布对有源扰动的动态响应,揭示有源扰动下光生化转化制氢过程的光热质传输和转化协同匹配规律,优化有源扰动光生化制氢体系的光热质传递行为,实现秸秆类生物质光生化转化制氢过程中相间传输性能改善和产氢强化,建立有源扰动下秸秆光生化制氢体系的光响应机理模型、动态热特性模型和产氢动力学综合模型,项目研究成果对秸秆类生物质的规模化生化转化具有重要意义,为构建稳定高效的生物质光生化转化制氢系统提供科学依据。
针对秸秆类生物质光生化转化体系存在的高固相、易结壳、易沉积、光热质传递屏障多等问题,开展了有源扰动添加对秸秆光生化制氢过程及光热质传输机理的研究。项目主要研究了不同形式有源扰动对制氢体系内相间传递及产氢的强化,确定了最佳有源扰动行为及调控机制,明晰了制氢过程中光照强度和搅拌速度对产氢能力的协同影响机理。结果表明(1)磁力搅拌的最佳转速为150 rpm, 间歇搅拌模式可以促进氢气生产,并且减少能耗。(2)添加振荡扰动可以加速气体释放,缩短发酵时间和提高氢气生产速率。高底物浓度下扰动对制氢促进作用显著,高光照能显著促进高转速下的产氢过程,振荡显著提高了高浓度秸秆的能量转化效率。(3)制氢不同阶段对光照和扰动要求不同,与之匹配的动态供光策略能显著增加产氢量(84.7mL/g TS),提高光能利用率(36.32%)。(4)300 mg/L L -半胱氨酸和100 mg/L氧化铁纳米粒子在添加时间间隔为12 h时,可得到最大产氢量234.55±7.5 mL,此时底物电子向氢转移35.94%,固氮酶活性提高了2.12倍。(5)表面活性剂的添加改变了制氢体系的流变特性与热质传递性能,在鼠李糖脂添加浓度为0.08 g/L和茶皂素添加浓度为1.5 g/L时,氢气产量分别获得了67.85%和24.97%的提高。微波辐射与表面活性剂的耦合,显著改善了秸秆类生物质产氢能力。项目的研究实现了秸秆类生物质光生化转化制氢过程中相间传输性能的改善,阐释了制氢光热质传输规律,为构建稳定高效的生物质制氢系统提供科学参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
钢筋混凝土带翼缘剪力墙破坏机理研究
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
基于同步辐射的A2-xScxMo3O12(A=Al,Fe,Cr,In)相变调控及负膨胀性能与机理研究
光生物制氢中光生化转化和传输机理
基于光弥散载体的光生物膜制氢系统的传递及产氢特性
光伏光热互补的全光谱制氢机理研究
秸秆生物制氢过程中暗发酵液的品质调控机理及质量传递特性研究