In recent years, low-dimensional crystalline materials have become an important direction in the development of new materials. They are particularly important for boosting the development of organic nanophotonics, highly emissive crystals, and highly efficient optoelectronic devices. However, at the current stage, the mechanism for the formation of low-dimensional crystals from semiconducting organic molecules and the relationship between the structure and performance of these materials are not very clear. A series of linear bipyridine and Y-shaped terpyridine conjugated compounds and corresponding functional ruthenium, iridium, and platnium complexes based on these ligands will be designed and synthesized in this proposed project. These new compounds are characterized by the presence of multiple weak-interaction sites, dual emissions from the ligand-localized and charge-transfer transitions, and the phosphorous emission of the functional metal complexes with a long lifetime. Organic and organometallic low-dimensional crystalline materials will be prepared from these newly synthesized compounds, by using a proper crystal-preparation method such as vapor deposition, templated synthesis, or self-assembly in solution state. Further study will focus on the synthesis of low-dimensional crystalline materials by combining two structurally-related components with complementary emission energies. With these studies a new molecular system with highly efficient emissions in the crystalline state will be developed by this project. The mechanism for the formation of organic crystals and the relationship between the crystal packing and corresponding optoelectronic performance will also be examined. This project will pay particular attention to the confined transmittance of photons and electron in one-dimensional single crystals, with the aim of developing highly emissive, waveguiding, and conducting low-dimensional crystalline materials.
近年来,低维有机晶态材料已逐渐成为新材料发展的一个重要方向,并为发展有机纳米光子学、高效发光晶体、高性能光电器件提供重要手段。但是现阶段,有机半导体分子聚集形成晶体结构的机理还不明确,低维有机晶体的结构与功能的构效关系还不够清楚。本项目拟设计、合成新型直线型二联吡啶和Y型三联吡啶共轭化合物及相应的钌、铱、铂等光电功能配合物,具有弱相互作用位点多、定域发光和电荷转移双重发射、以及金属配合物的长寿命磷光发射等特点。结合气相沉积法、模板法、液相自组装等方法,制备有机及配合物的低维微纳晶材料,进一步通过结构相似、能量互补的二元组分材料调控晶体发光波长,发展具有高效晶态发光的新型分子体系,并研究晶体结构组装形成的机理以及分子堆积方式与材料光电性能的关系,关注光子、电子在一维单晶的限域传播及效率,探索具有高效发光、光波导与导电功能的低维单晶材料。
有机晶态材料已逐渐成为近年来新材料发展的一个重要方向,并为发展有机纳米光子学、高效发光晶体、高性能光电器件提供重要手段。本项目针对基于共轭多吡啶配体及配合物的低维晶态材料的合成与光电性能开展工作。利用溶液快速沉淀法,制备了金属钌-铱和金属铱-铱配合物二元棒状或管状微纳晶体,实现在1%受体掺杂比条件下大于75%的高效三线态能量转移效率,具有多色发光、低损耗光波导、微纳光子信号处理等性质。合成了具有可变构象脲基桥联双铂金属配合物,实现多色晶体发光。制备了含有蒽基三芳胺的金属铂大环分子,研究了其在溶液状态的温度响应发光现象。合成了一系列含有三芳胺的树枝状多吡啶小分子,具有给-受体电荷转移发光、聚集增强发光和双重发射性质。合成了胺基吡啶配体取代的联吡啶钌配合物,表现出双重发射和金属响应发光等性质。这些材料为纳米光子学提供重要的分子基础。相关工作为高效发光分子材料的设计合成以及晶态发光材料的制备具提供重要指导意义。本项目研究成果在J. Am. Chem. Soc., Angew. Chem. Int. Ed.等期刊上发表论文16篇,项目负责人做邀请报告6次(4次国内,2次国际)。培养博士研究生2名和硕士研究生1名。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
低轨卫星通信信道分配策略
基于新型多吡啶配体配合物的构筑、结构与光催化性能调控
基于季铵盐型多吡啶羧酸配体的金属配合物的合成与活性研究
新型共轭桥联配体及一维链混合价配合物的合成设计
基于咪唑[1,2-a]吡啶-2-酮类配体的新型磷光配合物的设计合成与性能研究