阵列偶及阵列偶相关理论研究

基本信息
批准号:69972042
项目类别:面上项目
资助金额:11.80
负责人:赵晓群
学科分类:
依托单位:燕山大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:许成谦,卢辉斌,黄丽芳
关键词:
信号理论阵列偶相关函数
结项摘要

The perfect signal and its design play an important part in the optimizing design in the area of modernistic communication, radar, sonar, navigation, space ranging and controlling and electronically antagonism systems. It is of theoretical and application importance to study all kinds of sequence and array properties in depth. The most important application of the sequences and arrays is based on the coorelation properties of them,but such researches have some limitation because they are based on the research of the autocoorelation of single sequence or the crosscoorelation of multi-sequences.The theory of array pairs coorelation breaks out the concept of former equences,present to form the array pairs by two arrays, the autocoorelaiton function of the array pairs is defined by the crosscoorelation function of the two arrays. The concept of array paris extends the exist areas of the perfect signal,and the former perfect signal become its special types.Therefore,the theory of array pairs provide more perfect signal to the application areas such as communication engineering and so on.This project obtained many theory achievements in the area of array pairs, inclued:On the basis of perfect binary array pairs theory , the concepts of quasiperfect binary array pairs and doubly quasiperfect binary array pairs are presented ,the properties, construction and the relationship between them and perfect binary array pairs are studied.So the new construction of perfect binary array pairs are obtained. A new form of sequence pairs-punctured binary sequence pairs was defined,so the concepts of perfect punctured binary sequence pairs and odd-periodic perfect punctured binary sequence pairs are presented,and the propreties and construction are studied. A new form of array pairs-punctured binary array pairs was defined,so the concepts of perfect punctured binary array pairs and partial periodic perfect punctured binary sequence pairs are presented.,and the propreties and construction are studied. The quasi-perfect punctured binary array pairs and doubly quasi-perfect punctured binary array pairs are defined.Their properties and construction are studied,the realationship between them and perfect punctured binary array pairs is presented.The aperiodic auto-coorelation function of punctured binary sequence pairs is defined,the punctured binary comolementary sequence pairs is presented,and the properties and construction are studied. A new bolck design-differences set pairs is defined.The properties is studied.The relationship between differernces set pairs and perfect binary array pairs is given.The periodic complementary binary sequence pairs and differences family pairs are defined.The properties ,construction,and their relationship are studied. The optimization of binary sequences using genetic algorithms is presented.The high efficient searching algorithm of array pairs is designed,and the perfect binary array pairs ,quasi-perfect binary array pairs and other array pairs with certain volume are obtained.These theory achievements completed the theory of array pairs,enriched the perfect signal design theory,and provided more selectable signals for engineering application.

目前阵列偶和阵列偶相关理论的研究还不够深入和系统。本项目的研究内容是:创建一般情况下阵列偶相关函数的性质和特点;针对工程应用的需求,定义多种形式的最佳阵列偶(如循环相关、非循环相关、汉明相关、并元相关条件下,或多元条件下的最佳阵列偶),并研究它们的性质、构造方法和相互关系,以及工程应用等相关问题。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于一维TiO2纳米管阵列薄膜的β伏特效应研究

基于一维TiO2纳米管阵列薄膜的β伏特效应研究

DOI:10.7498/aps.67.20171903
发表时间:2018
2

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
3

基于SSVEP 直接脑控机器人方向和速度研究

基于SSVEP 直接脑控机器人方向和速度研究

DOI:10.16383/j.aas.2016.c150880
发表时间:2016
4

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
5

基于分形维数和支持向量机的串联电弧故障诊断方法

基于分形维数和支持向量机的串联电弧故障诊断方法

DOI:
发表时间:2016

赵晓群的其他基金

批准号:61271248
批准年份:2012
资助金额:60.00
项目类别:面上项目

相似国自然基金

1

多子集零相关区序列偶/阵列偶集设计技术研究

批准号:61561045
批准年份:2015
负责人:曾晓莉
学科分类:F0105
资助金额:34.00
项目类别:地区科学基金项目
2

阵列偶相关理论及其在扩频通信系统中的应用研究

批准号:60502016
批准年份:2005
负责人:李琦
学科分类:F0101
资助金额:18.00
项目类别:青年科学基金项目
3

粲偶素与类粲偶素的实验研究

批准号:11235011
批准年份:2012
负责人:苑长征
学科分类:A2602
资助金额:340.00
项目类别:重点项目
4

差集偶的乘子猜想与序列偶设计

批准号:60971126
批准年份:2009
负责人:贾彦国
学科分类:F0101
资助金额:25.00
项目类别:面上项目