With high disability rate, large bone defects still lack satisfactory treatments. The traditional artificial bone fails to induce sufficient angiogenesis in vivo in large bone defects, while the technique of distraction osteogenesis owns a slow rate of consolidation resulting in long treatment period and various complications. Therefore, combination of novel biological materials and distraction osteogenesis in the management of large bone defects possesses a vast application prospect. In our previous study, mesoporous silica nanoparticles (MSNs) were constructed and proved not only to promote bone regeneration in distraction area, but also that the special core-shell structure could be used for controlled release of biological factors. However, multiple injections in the same local area and uncertain effects were the major limitations in clinical application. Moreover, the exact kind of controlled-release factors deserves further research. To clarify this hypothesis, exogenous SDF-1 will be core-embedded into MSNs (SDF-1@MSNs) according to our previous report about low SDF-1 expression in distraction osteogenesis. Then the constructed porous zein scaffolds will be used as effective carriers of SDF-1@MSNs in vivo. Further, the effect and mechanism of porous zein scaffolds doped with SDF-1@MSNs on bone regeneration through degradation and controlled release of factors are to be investigated. This project will help to provide experimental basis for rapid bone regeneration and reconstruction in large defects.
四肢大段骨缺损致残率高,缺乏满意的治疗方案。传统人工骨因不能诱导体内足量血管长入,难以在大段缺损区存活,而牵张成骨术因矿化慢,治疗周期长,并发症多。因此,构建新型生物材料并和牵张成骨联合用于大段骨缺损修复,具有广阔的应用前景。课题组前期构建的介孔氧化硅纳米颗粒(MSNs),不仅有助于牵张区骨再生,而且特殊的核壳型结构为生物因子缓释提供条件,但局部多次注射在临床中运用受限、疗效不确切,且缓释生物因子的选择也值得深入探索。基于此,课题组拟(1)根据前期观察到的牵张区SDF-1表达低的特点,制备负载外源性SDF-1的MSNs(SDF-1@MSNs);(2)借助前期制备的多孔玉米蛋白支架,构建SDF-1@MSNs在体发挥作用的有效载体;(3)将SDF-1@MSNs掺杂的多孔玉米蛋白支架与牵张成骨联合,通过材料降解及缓释,探讨对长段骨再生的作用和机制。本课题为促进大段骨缺损快速修复提供重要实验依据。
大段骨缺损致残率高,缺乏满意的治疗方案。构建新型生物材料和牵张成骨联合运用于大段骨缺损修复具有广阔应用前景。在课题组前期构建的介孔氧化硅纳米颗粒(MSNs)及多孔玉米蛋白支架的基础上,以牵张成骨模型为主要研究对象,本课题主要开展以下研究内容:(1)结合前期观察到牵张区SDF-1表达低的特点,制备负载外源性SDF-1的MSNs(SDF-1@MSNs),将SDF-1@MSNs掺杂的多孔玉米蛋白支架与牵张成骨联合,探讨对长段骨再生的作用。(2)构建锶掺杂介孔硅纳米颗粒(Sr-MSNs),检测MSCs与其共培养后成骨分化及促血管生成潜能,观察Sr-MSNs对牵张成骨中骨和血管再生的作用。(3)构建磁性介孔氧化硅纳米微粒(M-MSNs),检测M-MSNs对MSCs成骨分化及牵张成骨中骨再生的作用。(4)构建负载M-MSNs的多孔玉米蛋白支架,检测MSCs与其共培养后成骨分化潜能,观察其对牵张成骨中骨再生的作用。(5)在M-MSNs颗粒中掺杂钴元素,构建载钴磁性介孔氧化硅纳米微粒(Co-MMSNs),评估对MSCs成骨分化和促血管生成潜能及牵张成骨区骨与血管再生的作用。(6)以含钴纳米颗粒为基础,构建复合纳米钴离子缓释水凝胶(GelMA@eIm/ZIF-67),检测GelMA@eIm/ZIF-67对MSCs成骨分化潜能和HUVECs成血管活性的作用,评估其对颅骨缺损模型的修复价值。(7)在介孔氧化硅基础上,构建银纳米颗粒修饰的介孔氧化硅包覆的单壁碳纳米管(SWCNTs@mSiO2-TSD@Ag),评估其抑菌活性和对感染性皮肤创面模型的修复作用。得出以下结论:(1)SDF-1@MSNs促进成骨分化和成血管潜能,但对牵张成骨效果不稳定。(2)Sr-MSNs增强成骨活性和成血管潜能,促进牵张成骨过程骨与血管再生。(3)M-MSNs促进成骨分化及牵张成骨区新骨再生。(4)负载M-MSNs的多孔玉米蛋白支架促进成骨分化,在牵张成骨模型中通过促进骨痂的形成和矿化增强骨缺损修复。(5)Co-MMSNs通过增强成骨和成血管活性促进牵张成骨中骨与血管再生。(6)GelMA@eIm/ZIF-67通过颅骨缺损部位的骨质再生、血管新生促进骨缺损修复。(7)SWCNTs@mSiO2-TSD@Ag具有良好抑菌活性,可以促进感染性皮肤创面模型愈合。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
粗颗粒土的静止土压力系数非线性分析与计算方法
PD-1相关PI3K-Akt通路对脓毒症免疫麻痹进程中 CD4+T淋巴细胞自噬的调控作用及机制的研究
HIF-1α信号通路调控下预血管化骨组织的构建及促进长段骨再生的作用和机制
兼具血管化和神经化再生微环境调控作用的3D打印复合多孔支架在骨缺损修复中的应用及机理研究
G蛋白、蛋白激酶和细胞骨架在杨树气孔运动中的作用
兼具骨诱导与促血管化的锶/丝素蛋白可注射多孔微球用于骨再生