A large number of high-rise buildings are located in strong earthquake area and strong wind condition, the corresponding structural damping performances is important for reliability and structural optimization is needed. Although the design and theoretical research of high-rise structures is becoming more and more perfect, there is still a lack of general dynamic damage evaluation model, and the research on the compound damper which is suitable for small earthquake or strong wind and rare earthquake simultaneously is not intensive. In the aspect of structural performance optimization, the idea and target of "uniform damage" and "collaborative optimization design" is insufficient. The structural damage index and model based on the elastic-plastic energy dissipation rate is firstly proposed and studied in order to accurately represent the evolution process of structural damage, and it can be applied to a variety of dynamic analysis models. The experimental and theoretical study on damping characteristics of medium or large size metal rubber is carried out, and the compound device which contain a metal rubber damper and buckling-restrained braces is proposed. The corresponding design method is intensively studied. On this basis, the theory and design method for uniform damage is studied. Furthermore, the collaborative optimization design method for structure-compound damper is simultaneously realized by intelligent algorithm. The research achievements will improve the performance-based design and damage assessment for high-rise building structure, and expand the applicability of damping devices. Hence, the project has important significance for theoretical study and engineering application.
大量高层结构处于强地震区和强风环境,其抗振(抗震和抗风)性能亟需受到重视并进行优化。尽管高层结构的设计和理论研究日臻成熟,但在动力损伤评估方面仍然缺少通用性强的损伤模型,关于能够同时减轻小震/强风和大震的复合减振装置和设计方法的研究也不够深入。在结构性能优化方面缺少对“均匀损伤”和“协同设计”理念的体现和研究。本项目首先研究基于弹塑性耗能差率的结构损伤指数和模型,使之适用于多种动力分析模式,并精准反映结构损伤演变过程。之后对中大尺寸金属橡胶的阻尼特性进行试验和理论研究,进而提出带限位锁.定功能的金属橡胶阻尼器和屈曲约束支撑复合减振装置,并建立相关设计方法。在此基础上,对“均匀损伤”的实现进行理论和设计方法研究,并利用智能算法实现“结构-复合减振装置”同时调控的协同优化设计方法和思想。研究成果将提升高层建筑结构的性能设计和损伤评估水平,拓展减振分析和装置的适用性,具有重要的理论及工程意义。
大量高层结构处于强地震区和强风环境,其抗振(抗震和抗风)性能亟需受到重视并进行优化。尽管高层结构的设计和理论研究日臻成熟,但在动力损伤评估方面仍然缺少通用性强的损伤模型,关于能够同时减轻小震/强风和大震的复合减振装置和设计方法的研究也不够深入。在结构性能优化方面缺少对“均匀损伤”和“协同设计”理念的体现和研究。本项目首先研究基于弹塑性耗能差率的结构损伤指数和模型,使之适用于多种动力分析模式,并精准反映结构损伤演变过程。之后对中大尺寸金属橡胶的阻尼特性进行试验和理论研究,进而提出剪切型阻尼器和屈曲约束支撑串联的复合减振装置、多级屈服耗能支撑等相关阻尼器,并建立相关设计方法。在此基础上,对“均匀损伤”的实现进行理论和设计方法研究,并利用智能算法实现“结构-复合减振装置”同时调控的协同优化设计方法和思想。研究成果将提升高层建筑结构的性能设计和损伤评估水平,拓展减振分析和装置的适用性,具有重要的理论及工程意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
坚果破壳取仁与包装生产线控制系统设计
舰艇金属-复合材料组合结构减振降噪优化设计理论与实验研究
非线性X型周期结构减振装置的设计及其减振性能研究
聚合物基多层复合阻尼材料的结构设计和减振机理研究
面向减振降噪及热防护的多功能超材料结构多尺度拓扑优化