Sensors of Internet of Things (IoT) have the advantages of like low price, flexible deployment, independent networking, diversified remote communication, strong anti-interference and damage resistance abilities etc., which make IoT very suitable for a broad coverage as well as fine-grained reliable monitoring to the key pollution sources of haze. Around the fundamental issue of "transmission reliability and content trustworthiness in haze key pollution sources monitoring", this project research four key scientific problems: First, In terms of topology reliability, project research the three-dimensional uniform-clustered sensor deployment strategy, which is suitable for the haze key pollution sources monitoring, highlighting the topology reliability of monitoring network; Second, In terms of transmission reliability, combined local with remote information transmission, project research optimized multi-objects reliable transmission and real-time guarantee mechanism, highlighting the real-time and reliability of information transmission; Third, In terms of content trustworthiness, based on combined Stochastic Petri Net, Game Theory and dynamic behavior regulation of sensor nodes, project research the content trustworthiness guarantee mechanism, highlighting the trustworthiness of monitoring content; Fourth, In terms of demonstration, according to the three scientific features above-mentioned, project optimize and upgrade existing traditional pollution sources monitoring system with the IoT. Based on backward inference to find and correct the emissions information of pollution source using Bayesian Network theory. Because of the conflicts between enterprise interest and pollution control, which makes the monitoring environment is very special, which makes it very important to improve the transmission reliability and content trustworthiness, thus requires special innovation research.
物联网具有价格便宜、部署灵活、组网独立、远程通信多样化、抗干扰抗破坏能力强等特点,使得物联网非常适合对雾霾重点污染源进行广覆盖、细粒度的可靠监测。项目围绕解决"目前雾霾重点污染源监测中的信息传输可靠与内容可信"问题,研究四个关键科学问题:①在拓扑可靠性方面,研究适合雾霾重点污染源监测的均匀分簇的三维立体物联网节点部署方案,突出监测网的拓扑可靠性;②在传输可靠性方面,研究本地和远程相结合的多目标优化的可靠传输和实时性保障机制,突出信息传输的可靠性和实时性;③在内容可信性方面,研究基于随机博弈网新理论的节点行为监管的信息内容可信保障机制,突出监测内容的可信性;④在实证方面,对现有传统污染源监测系统按前三个科学特性进行物联网优化升级,并利用贝叶斯网络对污染源排放情况进行反演与修正。由于企业利益可能与污染控制冲突,致使监测环境十分特殊,这使得提高监测的可靠可信性变得尤为重要,需进行专门创新研究。
物联网具有价格便宜、部署灵活、组网独立、远程通信多样化、抗干扰抗破坏能力强等特点,使得物联网非常适合对雾霾重点污染源进行广覆盖、细粒度的可靠监测。目前由于企业利益可能与污染控制冲突,致使监测环境十分特殊,因此在物联网应用中迫切需要解决监测的可靠和可信性问题。项目研究“目前雾霾重点污染源监测中的传输可靠与内容可信”的理论、模型与关键机制。研究重点解决了四个关键问题:①提出了适合雾霾重点污染源监测的三维立体模块化节点部署方法及可靠性量化分析方法;②研究了多条件下基于贝叶斯网络反演的雾霾重点污染源监测数据的可靠性问题;③基于数据驱动的信任模型设计及应用、多因素信任模型设计及应用以及基于用户行为数据的信任评价方法等的内容可信性研究;④实现了污染源监测系统、监测数据的分析与实际应用等实证方面的研究。项目建立比较完整的基于物联网的雾霾重点污染源远程监测的拓扑可靠性、监测数据可靠性与内容可信性保障技术的理论架构,对推动该研究的整体发展,使物联网在我国雾霾重点污染源监测中发挥长效作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
物联网中区块链技术的应用与挑战
当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响
雾霾天气、投资者关注与股票市场:基于互联网数据的研究
基于雾、霾、弱光三因子的图像雾霾去除
基于雾计算的物联网资源与服务有效匹配算法
分层异构车联网中内容缓存与信息传输的联合优化研究