Full face tunnel boring machine is the key equipment for infrastructure construction, because the geological environment is complex and difficult to probe during excavation, the electro-hydraulic system is inclined to suffer from intense impact loading, therefore, the geological compliance has always been a thorny problem. A compound controller is theoretically studied and experimentally verified, which aims to improve the active geological compliance in complex geological environment and suppress the impact force during sudden load variations. In order to improve the geological compliance of the thrust system on the basis of force/velocity tracking performance, the nonlinear mathematical model of the electro-hydraulic thrust system is established, a parameter identification strategy is proposed to estimate the excavating load parameters, and a multi-objective control algorithm is presented to take consideration of the geological compliance and force/velocity tracking performance simultaneously, in which some important theories such as parameter identification, particle swarm algorithm and multi-objective controller are studied in this project. In order to suppress the impact force during sudden load variations, the target impedance parameter switching strategy is proposed, and the optimal switching criteria is deduced to dissipate the impact energy of the system with the steepest descent, in addition, an extended adaptive controller is proposed for the impedance control. A compound motion controller combining the multi-object control and the target impedance parameter switching strategy, and a seamless transfer controller is presented to achieve bumpless control mode transfer. Therefore, the proposed compound control strategy can improve the active geological compliance in complex geological environment and suppress the impact force during sudden load variations. The research achievements can provide theoretical support for developing the electro-hydraulic thrust system of full face tunnel boring machine.
全断面掘进装备是国家基础设施建设急需的重大技术装备,由于掘进过程地质环境复杂且难以实时探测,电液系统易遭受高强度冲击载荷,因此,其地质顺应性一直是研究难点。本项目以提高复杂工况下电液推进系统主动地质顺应性、降低突变地质下冲击载荷为目标,开展推进复合运动控制策略研究。针对推进力/速度控制无法兼顾地质顺应性的问题,综合运用参数辨识、粒子群算法、多目标控制等理论,建立非线性模型,提出同时考虑地质顺应性和力/速度跟踪性能的多目标控制策略;针对突变地质下冲击载荷,提出目标阻抗切换控制策略,研究冲击能量最速耗散切换准则,从而降低掘进冲击载荷;在上述研究的基础上,提出基于多目标控制和目标阻抗切换控制相结合的复合运动控制策略,设计无缝切换控制器,解决多控制模式平稳切换问题。本项目研究可提高复杂工况下推进系统主动地质顺应性,降低突变地质下冲击载荷,为全断面掘进装备电液推进系统的研究提供重要的基础理论支持。
全断面掘进装备掘进过程地质环境复杂且难以实时探测,电液系统易遭受高强度冲击载荷,因此,其地质顺应性一直是研究难点。本项目以提高复杂工况下电液推进系统主动地质顺应性、降低突变地质下冲击载荷为目标,开展电液推进复合运动控制策略研究。为此,首先提出容积伺服变量泵、比例伺服阀并联驱动的推进系统,兼顾了动态性能、控制精度及能源消耗,考虑液压非线性因素,建立推进系统空间结构与元件非线性特性的联合数值计算模型,研究系统参数与控制性能的匹配优化方法;进而提出电液控制系统复合参数辨识方法,对系统不确定性及负载特征参数进行在线自适应辨识,采用历史数据和在线数据同时对未知参数进行在线更新,补偿了推进系统的模型偏差及参数不确定性等非线性特性,实现了负载特征参数在线精确辨识;其次设计了基于干扰观测器的电液推进系统压力控制器,将推进系统压力动态中的模型不确定性和负载干扰作为集中干扰项,通过干扰观测器进行估计补偿,提出了基于神经网络的电液推进系统速度控制器,对系统存在的参数不确定性及干扰进行在线估计及补偿;最后在电液推进系统压力控制及速度控制的基础上,设计了模糊阻抗控制策略,以满足在复杂多变地层中隧道的安全施工。通过模糊规则调整阻抗控制参数,使控制器在复杂多变地层中获得较好的性能。通过本项目研究,形成了复杂工况下推进系统主动地质顺应性理论,降低复杂地质下冲击载荷,为全断面掘进装备电液推进系统的研究提供重要的基础理论支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
大断面掘进装备极端工况下的电液系统载荷顺应性研究
全断面大型掘进装备集成控制与优化运行理论及应用
全断面掘进装备刀盘刀具磨损状态监测系统开发
超大断面盾构推进电液控制系统低围岩扰动调控方法