For solving the current international CO2 greenhouse gas emissions which is still difficult to control and combining with rising energy and raw materials chemicals demands, the project intends to design and prepare a series of multifunctional materials processing the structure of (ZnO-NPA/FeGM)n three-dimensional heterogeneous porous sandwich construction which have excellent CO2 photocatalytic reduction and alternately assemble ZnO nano-pillar and Fe metals (or alloys) ultra-thin films, by adopting "Bionic supported liquid membrane method", "seed growing technology" and "layer assembly tools". The interior of materials includes a "heterojunction" "super-film" "alloying" "Nano-Array", " porous structure" and other structural elements which can be used to regulate the performance. Using the photocatalytic reduction of these kinds of materials for greenhouse gases CO2, can realize hydrocarbon fuel (raw) materials synthesis- reaction with high conversion, high selectivity, high cost, high separation efficiency and high utilization of sunlight. The implementation of this project, will not only obtain a series of new multifunctional materials, and also can greatly promote the photocatalytic CO2 reduction reaction towards practical process, which is supposed to achieve environmental / energy dual harvest by reducing greenhouse gase CO2 and obtaining hydrocarbon fuel (raw) materials. In terms of materials and chemical point of view, or the energy solution and environmental protection, it has a very important significance.
本项目针对当前国际尚难以控制的CO2温室气体排放难题,结合能源及化工原料日益增长的需要,拟通过"支撑液膜仿生方法"、"种子生长技术"和"层层组装手段"设计制备一系列对CO2具有优异光催化还原性能的,ZnO纳米柱与Fe系金属(或合金)超薄膜交替组装的,(ZnO-NPA/FeGM)n夹层多孔立体异质结构多功能材料。该材料内部囊括了"异质结""超薄膜""合金化""纳阵列""孔结构"等多种可用于调控性能的结构单元。用于CO2温室气体的光催化还原处理,可实现其合成碳氢燃(原)料反应的高转化率、高选择性、高性价比、高分离效率、以及对太阳光的高利用率。本项目的实施,不仅可以获得一系列新型多功能材料,而且可以大大推进CO2光催化还原反应走向实用的进程,从而有望实现消减CO2温室气体和获取碳氢燃(原)料的环保/能源双丰收。这无论从材料、化工来看,还是对能源、环保来说,都具有非常重要的意义。
本项目针对CO2温室气体排放和工业污染难题,结合能源及化工原料日益增长的需要,通过"支撑液膜仿生方法"、"种子生长技术"和"仿生水热手段",设计制备了一系列对CO2和有机污染物具有优异光催化性能的,“ZnO或其它金属氧化物纳米柱”与“Fe系金属超薄膜或Cu纳米片(线)”紧密组装的异质超结构纳米复合材料。由于该系列材料内部囊括了异质结、超薄膜、电通路、孔结构等多种可用于调控性能的结构单元,使之用于CO2和有机污染物的光催化处理时获得了快速、高效、廉价、可循环的良好效果,以及对太阳光的超高利用率。. 除完成主体任务外,还进行了相关体系的探索。不仅合成出特异构造的碳基(或碳氮掺杂的)金属氧化物复合材料,获得了优异的气敏和超电容性能;而且制备出了超柔性的导电超材料,表现出特异的柔性力学性能。. 本项目的完成,不仅获得了多种新的合成方法和一系列新型多功能材料,而且可以大大推进CO2光催化还原反应和有机污染物光催化降解技术走向实用的进程,具有重要的科学意义和广阔的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
碱性增强铋系复合氧化物高效光催化还原CO2制备碳氢燃料研究
SrTiO3光催化还原CO2制备碳氢燃料的研究
天然高分子/半导体复合材料光催化还原CO2制备碳氢燃料
双位点铌酸盐超薄片光催化体系的构建及其还原CO2制备碳氢燃料研究