High speed Big Data carrying optical network, which has high efficiency and low delay, is becoming an important development trend of information network in the era of Big Data. The core mechanism, technical approach and implementation method of the high speed, high efficiency and low delay Big Data carrying optical network are currently the key issues needed to be addressed urgently. The proposed project will focus on the following three parts of research works..(1) Establishment of the theoretical model for dynamic burst coherent optical transmission system, and proposing of the modulation mechanism and implementation method of high-order multi-dimensional adaptive optical coded modulation. These mechanism and methods should support high efficient optical burst coherent transmission beyond 100Gbps..(2) Analyses of characteristics and compensation mechanism of various distortions generated from the burst fast-changing optical fiber channel, proposing of the coherent detection mechanism suitable for multiple high-order modulation formats and the compensation DSP algorithms in the burst coherent detection receiver for impairments from fast-changing optical fiber channel. These mechanism and algorithms should be not only feasible for very high speed implementation beyond 100Gbps, but also with low complexity, low delay and low overhead..(3) Design of implementation scheme and the development of experimental system of burst adaptive coherent optical transmission beyond 100Gbps, and the experimental validation of the innovative technology solutions..The project has great hopes to achieve an important breakthrough in multi-dimensional high-order adaptive coded modulation which would support flexibly high speed and high efficiency, impairment suppression DSP algorithms with low complexity, low delay and low overhead for various impairments in the burst coherent detection, and the experimental system of burst adaptive coherent optical transmission operated at 120-480Gbps line bit rate per channel, and so on. Expected achievements can lay a solid theoretical and technical foundation for realizing the dynamic Big Data carrying optical network with high efficiency, high speed, large capacity and low delay, as well as effectively supporting the development of Big Data carrying optical network.
高速高效低时延大数据承载光网络是大数据时代信息网络的重要发展方向,其核心机理、技术途径与实现方法是目前迫切需要解决的关键问题。本项目将重点研究:(1) 动态突发相干光传输系统模型建立与高速高效高阶多维自适应光编码调制机制与实现方法;(2)突发快变光纤信道损伤特性和抑制补偿机理、多调制格式通用相干接收机制与突发相干接收中快变信道损伤抑制补偿DSP算法;(3)超100Gbps突发自适应相干光传输系统实现方案设计与实验系统建立以及创新技术方案的实验验证。 . 通过以上创新性理论研究和科学实验工作,拟在高速高效高阶多维自适应光编码调制、突发相干接收中低复杂度低时延低开销的多损伤抑制补偿DSP算法以及单信道120 -480Gbps突发自适应相干光传输实验系统等方面实现重要突破,预期成果可为实现高速大容量、高效、低时延、动态大数据承载光网络奠定坚实理论与技术基础,有效支撑大数据承载网络的发展。
本项目面向大数据时代大数据业务有效承载的发展需求,为实现带宽动态调度的高速大容量、高效率、低时延大数据承载光网络,针对其底层光传输所面临的如何实现超高速、大容量、动态连接业务的低时延传输和动态网络的高效资源利用等技术挑战,深入开展了动态自适应突发相干光传输系统的基础理论和关键技术研究,取得了创新性研究成果。首先,针对现有信息调制方式不够灵活(不能根据网络状态精细调整业务连接频谱效率等参数)、光高阶编码调制的编译码复杂度过高难以低时延实时实现且码率固定等关键技术难题,提出了弹性多维调制解调方案和灵活开销的可变速率编码调制联合概率整形方案,有效提升了大数据承载光网络传输的性能、效率和灵活性,同时也降低了系统实现复杂度。其次,针对高速突发自适应相干光传输下光突发时隙调制格式快速改变、系统损伤动态快速变化所带来的相干接收DSP处理新需求,项目组提出了一系列支持多调制格式的突发相干接收DSP算法,有效降低了算法复杂度、加快了算法收敛速度、减小了算法处理时延。再有,为全面仿真和实验验证多维灵活调制机制和通用突发相干接收与多损伤抑制算法的可行性,项目组设计了超100Gbps突发自适应相干光传输系统方案,建立了由支持多调制格式的自适应光发射机、可调光传输链路和突发相干光接收机所组成120~480Gbps突发相干光传输仿真及离线实验系统,实现了多种灵活变化的调制格式信号在不同信道条件下的高速突发传输,并完成了所提新机制和新算法的可行性和有效性验证。此外,为满足弹性大数据光网络全网资源综合优化和动态调度上的迫切需要,项目组提出了网络服务能力与能耗效率联合优化的选播和混播路由、调制格式与频谱分配算法,有效提升了网络综合性能。本项目研究成果为大数据承载光网络规划与建设奠定了一定的理论基础,对相关设备研究开发具有重要的应用价值,对相关产业的快速发展将起到积极的促进作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
物联网中区块链技术的应用与挑战
一种改进的多目标正余弦优化算法
面向大容量相干光正交频分复用(CO-OFDM)传输系统的光信道非线性损伤补偿技术研究
多载波交错正交幅度调制系统的相干光传输技术研究
部分相干光传输及其在物体信息恢复中的应用
面向高速光传输链路动态色散损伤的在线监测理论与关键技术研究