Applying a non-classical damping model to an offshore wind turbine structure, which is more accord with actual projects, the vibration equation of structure can’t be decoupled in the frequency domain, and the traditional calculation methods of dynamic response in frequency domain will not be used directly. In order to take into account the celerity and accuracy of dynamic response analysis of the offshore wind turbine structure, the project will develop a dynamic response algorithm in frequency domain which can deal with a non-classical damping model of offshore wind turbine structure. The project will carry out the research on dynamic response comparison of mathematical model with the proportion damping, arbitrary symmetry damping and asymmetric damping models, and research into the dynamic performance of offshore wind turbine structure with the asymmetry damping matrix model. The aerodynamic damping contribution to the total damping of blades and the aerodynamic damping impact mechanism on the stability of blade coupled motion will be studied in the project, and the computational method of the wind turbine blade dynamic response with the asymmetric aerodynamic damping matrix will be developed in frequency domain. Based on the research of the topology optimization algorithm suited for offshore wind turbine jacket support structures, the project will carry out the multi-input and multi-output high-efficiency computing technology research for offshore wind turbine structure and compare with commercial software results. Relying on the engineering advantages of the organization, the physical model test will be launch, meanwhile the field testing of offshore wind power structure will be carried out. The results of project will expand the application scope of traditional frequency domain algorithm in theory, and improve the efficiency of dynamic response calculation of offshore wind turbine structure in engineering.
海上风电结构在考虑更为符合工程实际的非经典阻尼模型时,其非对称性将造成结构运动方程在频域内无法解耦,导致传统频域动力响应计算方法无法直接使用。为兼顾海上风电结构动力响应分析时快速性、准确性的要求,本项目将发展一种能够处理非经典阻尼模型的海上风电结构动力响应频域算法,开展比例、任意对称及非对称阻尼时数学模型的动力响应对比研究,进行海上风电结构频域计算方法在非对称阻尼矩阵形式下的动力性能研究;研究气动阻尼对叶片总阻尼的贡献程度、气动阻尼对叶片耦合运动稳定性的影响机理,进而发展非对称气动阻尼矩阵时风机叶片频域动力响应计算方法;在研究导管架式海上风电支撑结构拓扑优化算法的基础上,开展海上风电结构多输入、多输出的高效计算技术研究,并与商业软件进行对比;依托单位工程优势,开展物理模型试验及海上风电结构的现场测试。项目成果将在理论上拓展传统频域算法的适用范围,在工程上提高海上风电结构的动力响应计算效率。
针对海上风电结构服役环境恶劣,长期承受各种环境载荷交互作用,如风、浪、流、冰、地震等影响,项目组按照项目计划书,开展了海上风电结构动力响应分析研究工作,获得了预期的研究成果。在以下四个方面取得了进展:1)非经典阻尼矩阵时结构动力响应频域分析算法研究;2)非对称气动阻尼矩阵时风机叶片频域动力响应计算方法研究;3)导管架式海上风电支撑结构拓扑优化算法研究;4)导管架式海上风电结构整体动力响应频域方法研究。在项目资助下,研究进展在Ocean Engineering、太阳能学报等国内外刊物及国际学术会议上发表论文11篇,其中SCI、EI论文8篇,中文核心期刊论文3篇,授权国家发明专利1项,软件著作权1项,获得电力行业优秀工程设计一等奖1项(项目负责人排名第2),研究成果实际应用于龙源江苏大丰(H12)200MW海上风电场、江苏蒋家沙300MW海上风电场、龙源江苏大丰(H7)200MW海上风电场,并引入能源行业标准《海上风电场工程风电机组基础设计规范》(NB/T 10105-2018)。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
玉米叶向值的全基因组关联分析
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
非零初始条件下海上浮式风电基础振动响应频域算法及试验研究
非经典阻尼结构动力分析与实验研究
非粘滞阻尼力模型及其结构动力响应分析方法研究
海上风电浮式基础动力特性研究