Micro motor is the core equipment of energy conversion, function driving and precision control in MEMS systems. However, the friction problem is becoming seriously with the scale reduction, which directly limits power output, reduces stability, and even induces system early failure. The diamagnetic levitation technology possesses the frictionless, passive self-stabilization and small shape merits, which is an effective way to solve the friction problem of micro motor. However, the dynamic stable suspension principle and high-speed driven method have not yet been systematically resolved, which restrict its further development. To reveal the dynamic stable suspension principle, a multi-energy domain coupled model including permanent magnetic field, electrostatic field and force field is proposed in this project. The constitutive relation and transmission law for the diamagnetic levitation force will be derived using Hamiltonian potential function. To acquire the high-speed driven method, a voltage-induction synchronous electrostatic driven system is proposed. Based on the capacitance coefficient matrix method, the mapping relationship between electric field energy, electrostatic force, torque, and design parameters will be obtained and optimized. As key technologies, the multi-energy domain coupling stability design and high-speed voltage-induction synchronous electrostatic driven method will be figured out and a systematic diamagnetic suspension motor design method will be established in this project, providing a new development path for high-speed micro motor system.
微型电机是MEMS系统中能量转换、功能驱动、精密控制的核心设备,但其摩擦问题随尺度的降低急剧凸显,直接制约了功率输出、降低了稳定性,甚至诱发系统提前失效。应用抗磁悬浮技术尺度效应下无摩擦、被动自稳定的特性是解决微型电机机械摩擦问题的一种有效途径,但制约其进一步发展的动态稳定悬浮机理与高速驱动方法涉及多能域耦合、多学科内容,尚未得到系统性的解决。本项目针对上述关键问题,提出通过构建多能域永磁场、静电场和力场间的耦合模型,采用哈密顿势函数表征动态抗磁悬浮力的本构关系和传递规律,揭示动态稳定悬浮机理;提出通过构建电压感应式同步旋转静电驱动系统,基于电容系数矩阵法,获得电场能量、静电力及转矩与设计参数的映射关系并进行优化设计,掌握高速静电驱动设计方法。本项目将突破多能域的耦合稳定性设计、电压感应式同步高速静电驱动等关键技术,建立系统性的抗磁悬浮电机设计方法,为高速微型电机提供一条新的发展途径。
高精度的位姿调节与测量是微型无人机实现精密定位捕获、探测等军事任务的重要前提。但现有微型电机及倾角传感器由于结构的摩擦效应,直接制约了功率输出及角度检测精度的发展。应用抗磁悬浮技术无摩擦、被动自稳定的特性是解决微型器械机械摩擦问题的一种有效途径,但制约其进一步发展的动态稳定悬浮机理、高速驱动方法与精密传感检测涉及多能域耦合、多学科内容,尚未得到系统性的解决。本项目针对上述关键问题,提出通过构建多能域永磁场、静电场和力场间的耦合模型,揭示抗磁悬浮系统动态稳定悬浮机理;提出通过构建介电弛豫式静电驱动系统,基于电容静电能原理,获得电场能量、静电力及转矩与设计参数的映射关系并进行优化设计,掌握高速静电驱动设计方法,实现400-1000 V电压区间0-400 rpm全转速范围内平稳运转;获得倾角传感系统输入输出角度测量模型,实现抗磁悬浮传感系统±0.640º微小角度区间5.590 mm/º高灵敏高精度精确测量。本项目突破了多能域的耦合稳定性设计、介电弛豫式高速静电驱动、高精度角度检测方法等关键技术,建立系统性的抗磁悬浮电机及抗磁悬浮倾角传感系统设计方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于二维材料的自旋-轨道矩研究进展
地震作用下岩羊村滑坡稳定性与失稳机制研究
新疆软紫草提取物对HepG2细胞凋亡的影响及其抗小鼠原位肝癌的作用
微型抗磁性轴承稳定磁悬浮机理、非线性动力学理论与实验研究
磁悬浮动磁式平面电机多自由度运动电气驱动方法研究
轨道驱动用磁悬浮永磁直线容错电机及其控制技术研究
无线驱动与控制微型超声电机及其在胶囊内窥镜中的应用研究