With the development of semiconductor manufacturing and ultra-precision measurement, the vibration isolation performance plays an increasingly important role in many high-end equipment. Due to the stringent requirements in aspects of high load capacity, low power consumption, high vacuum level, the conventional contact-type vibration isolation technology is no longer suitable. A novel magnetic levitation vibration isolation system based on the permanent magnetic gravity compensation is proposed in this project. The low-stiffness magnetic springs are adopted to compensate the gravity of rated load, and the multi-degree-of-freedom motion control of the system is realized by the planar motors. The proposed vibration isolation system has many outstanding merits, such as high level of integration, high load capacity, low stiffness, low power consumption, vacuum compatibility, etc., thus it can expected that this innovation has a good application prospect in large manufacturing equipment and precision measuring instrument, e.g. the extreme ultra violet lithography. This project mainly focuses on the accurate model of magnetic spring, quasi-zero stiffness principle analysis, temperature rise suppression for planar motor, vibration isolation system optimization and so on. The influence of the key parameters, external magnetic field, and environment temperature on the performances of levitation force density and stiffness matrix for the magnetic spring will be analyzed. Different topologies of the magnetic springs are compared taking both large load capacity and low stiffness into account. Additionally, the methods to increase the force density and to suppress the force ripple for the planar motor are presented, and the reasonable sensory system arrangement and control strategy are explored. Finally, the system-level design method for the magnetic levitation vibration isolation system with large load capacity and low power consumption will be summarized.
随着半导体制造、超精密测量等领域的日益发展,对高端仪器设备的隔振性能提出了越来越高的要求,主要体现在大承载能力、低温升损耗、高真空兼容性等方面,使得传统的接触式隔振技术难以适用。本项目提出一种基于永磁重力补偿技术的磁悬浮隔振系统方案,利用低刚度的磁浮弹簧来抵消平台载荷的重力作用,并采用平面电机实现系统的多自由度主动控制,具有集成度高、承载力大、刚度低、损耗小、兼容真空环境等突出优点,在极紫外光刻机等大型制造装备与精密测量仪器中具有良好的应用前景。本项目重点围绕磁浮弹簧精确建模、准零刚度机理分析、平面电机温升抑制、隔振系统优化设计等关键技术开展研究;分析磁浮弹簧悬浮力密度、刚度矩阵等性能随主要参数、外部磁场及环境温度的变化规律,探究兼顾大载荷与低刚度的合理拓扑;研究平面电机推力密度提升及推力波动削弱方法,探索合理的感知系统布局方案与控制策略,提出大载荷低功耗磁悬浮隔振系统的综合设计方法。
随着半导体制造、超精密测量等领域的日益发展,对高端仪器设备的隔振性能提出了越来越高的要求,主要体现在大承载能力、低温升损耗、高真空兼容性等方面,使得传统的接触式隔振技术难以适用。本项目提出一种基于永磁重力补偿技术的磁悬浮隔振系统方案,利用低刚度的磁浮弹簧来抵消平台载荷的重力作用,并采用平面电机实现系统的多自由度主动控制,具有集成度高、承载力大、刚度低、损耗小、兼容真空环境等突出优点,在极紫外光刻机等大型制造装备与精密测量仪器中具有良好的应用前景。本项目重点围绕磁悬浮隔振系统的精确数学模型、大载荷低刚度磁浮弹簧拓扑结构、磁悬浮隔振系统的特性分析与优化、磁悬浮隔振系统的设计方法与测试方法等关键问题开展研究,在以下四个方面取得了研究成果。(1)建立了重力补偿单元的精确数学模型,与经典等效电流法或磁荷法相比较,将模型误差由8%-12%的降低到3%以内,为低刚度重力补偿单元及磁悬浮隔振系统的分析设计提供重要理论支撑;(2)综合比较各类现有重力补偿单元结构,提出了一种二维永磁阵列式磁浮弹簧拓扑,具有悬浮力大、悬浮力刚度低、寄生力小等优点,适用于大载荷磁悬浮隔振领域;(3)完成了重力补偿单元与主动控制单元的电磁性能分析与优化工作,以极距、极弧系数、永磁体厚度、气隙长度为主要结构参数,分析参数变化对力能特性的影响规律,总结了低刚度重力补偿单元的优化设计方法;(4)研制了重力补偿单元与主动控制单元的原理样机,搭建了悬浮力测试平台与两自由度大载荷磁悬浮系统原理验证平台,测试结果表明,系统在支撑600kg载荷下仍具有较低的悬浮力刚度。本项目的研究成果为高端装备制造领域的隔振减振装置提供了创新性解决思路与理论基础,为大载荷近零刚度磁悬浮隔振系统的工程实现提供了技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
宽弦高速跨音风扇颤振特性研究
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
环形绕组无刷直流电机负载换向的解析模型
基于生态系统服务流视角的生态补偿区域划分与标准核算--以石羊河流域为例
基于弱对偶的平面三角形格网离散线转化生成算法
准零刚度隔振系统混沌化技术研究
多振子耦合准零刚度隔振浮筏的非线性隔振和减振机理研究
基于双稳定压电结构的准零刚度压电阻尼卫星隔振系统机理研究
磁悬浮浮筏主动隔振系统刚度匹配机理的研究