Both photoelectrochemistry and piezoelectric electrochemistry involve charge separation in the interiors and at the surfaces of corresponding active materials, and the allied researches of them are helpful to better understand the extranuclear electron movement issue as a core scientific issue in chemistry discipline as well as to develop research methods and tools in the fields of piezoelectric electrochemistry and photoelectrochemistry. In this project, we plan to employ the inverse piezoelectric effect based quartz crystal microbalance (QCM) for dynamic monitoring and characterization of photoelectrochemistry processes as well as evaluation of some key parameters and factors like mass-specific photoelectrochemical activity and reactant adsorption. We will also select some piezoelectric semiconductors possessing both direct piezoelectric effect and photoelectrochemical activity to explore and develop a new working mode of synergetic acoustic-optical-electrical chemistry with improved analytical performance (piezoelectric photoelectrochemistry), mainly on the basis of piezoelectrically engineering the band structure of semiconductors for inhibiting the recombination of photogenerated electrons and positive holes. The above materials and methods will be used for high-performance analysis of the analytes related to some bioaffinity, biocatalysis and specific chemical reactions. This project is of innovation, scientific value and application prospect. The main investigation contents are (1) QCM characterization and mass-specific photoelectrochemical activity evaluation at photoelectrochemical electrodes; (2) piezoelectric intervention of photoelectrochemical sensing interfaces; and (3) analytical applications.
光电化学和压电化学均涉及到相关活性材料内部/表面的电荷分离,两者的联合研究有助于深入理解化学学科中核外电子运动这一核心科学问题以及发展压电化学和光电化学分析领域的研究方法和手段。本项目中,我们拟采用基于逆压电效应的石英晶体微天平(QCM)技术,对一些光电化学过程进行动态监测和表征,评估质量比光电化学活性、反应原料吸附等关键参数和因素;选用兼具正压电效应和光电化学活性的压电半导体材料,通过正压电效应调变半导体能带结构,抑制光生电子和空穴的复合,探索和发展声-光-电化学协同工作新模式(压电光电化学),提高分析检测性能,用于生物亲和、生物催化和特异化学反应相关组分的高性能分析,具有创新性、科学价值和应用前景。主要研究内容:(1)光电化学电极的QCM表征与质量比光电化学活性测试;(2)光电化学传感界面的压电干预;(3)分析应用。
光电化学和压电化学均涉及到相关活性材料内部/表面的电荷分离,相关研究有助于深入理解化学学科中电子运动这一核心科学问题以及发展压电化学和光电化学分析表征方法。本项目中,我们采用石英晶体微天平技术,测定了TiO2的质量比光电化学活性和评估了光电子转移的有效距离,也监测了光沉积纳米金和黑色素仿生材料聚多巴胺等的过程以及染料敏化的过程;通过压电效应和光电化学效应的耦合来抑制光生电子和空穴的复合,改善了ZnO材料的光电化学性能和光电流响应;基于新型光电活性材料和结构,进行了光电化学酶分析和免疫分析。研究成果已整理成31篇标注论文发表在Chem. Commun., ACS Applied Mater. Interfaces和Biosens. Bioelectron.等刊。项目实施期间,获湖南省自然科学奖一等奖。培养了毕业研究生14名。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
基于石英晶体微天平和功能高分子薄膜的化学传感器研究
基于石英晶体微天平与抗原决定基印迹技术的新型蛋白质传感体系的构建与应用研究
石英压电晶体液相振荡规律及其在分析化学中的应用
可控分子印迹-石英晶体微天平用于瘦肉精的检测