During high-speed cutting process of difficult-to-cut materials, high local temperature in the tool-chip interface has its controlling influence on the workpiece deformation, tool wear and recession deformation. Therefore, it is important to obtain the exact temperature rise in the tool-chip interface for quality control of the machined parts, tool wear prediction and cutting model refinement. In order to realize online precise perception of the cutting tools’ operating condition features during high speed cutting process of hard-to-cut materials, the following issues will be studied, including: 1) appropriate design of micro-textures on tool surface and efficient fabrication process of the thin film thermocouples deposited in the micro-grooves are explored, to establish an integrated manufacturing method of surface micro-textures and thin film sensors on cutting tools, which realizes a precise, in-situ temperature measurement of single-points within the cutting area; 2) a three-dimensional transient nonlinear heat conduction equation of the cutting tools based on the dynamic cutting process is established, using the measurement information of finite points in the cutting area, a fast and accurate calculation method for the surface heat flux identification is proposed, to realize a fast temperature field reconstruction of the cutting area; 3) the thermal behaviors between the tool and workpiece are studied, the energy evolution mechanism of the interaction interface is revealed, and a relation model between the tool’s features and the cutting area temperature is built; 4) a micro-texture cutting tool integrated with thin film thermocouples is devised for conducting perceptual experiments regarding the operating condition features of cutting tools. All of the researches herein will provide important theoretical and methodological support for high quality manufacture of the thin-walled parts with difficult-to-cut materials.
难加工材料高速切削过程中,切削区产生的局部高温导致随时空变化的工件变形、刀具磨损与让刀变形,它的获取对控制零件加工质量以及实现刀具磨损预测和切削模型精化等均具有重要意义。本项目针对难加工材料高速切削过程中刀具工况特征在线精确感知需要:1)探索刀具表面微织构设计及沟槽型微织构内薄膜热电偶的高效制作工艺,建立刀具表面微织构与薄膜传感器集成制造方法,实现切削区域内单一测点温度的原位精确测量;2)建立刀具三维瞬态非线性热传导方程,提出基于有限温度测点信息的刀具表面热流快速精确计算方法,实现切削区域温度场的快速重构;3)研究切削加工过程中刀具-工件之间的热力学行为,揭示二者交互作用界面能量演变机制,建立刀具结构几何特征与切削区温度之间的关系模型;4)研制集成薄膜热电偶的表面织构刀具,结合典型应用开展刀具工况特征跟随感知实验。研究成果可为航空薄壁类零件高品质制造提供重要的理论和方法支撑。
为实现难加工材料的高速切削过程中的温度跟随感知,本项目在智能测温刀具传感器设计制造、温度场在线重构方法、跟随感知等方面开展了关键理论方法和关键技术研究。(1)提出了利用刀具表面微织构实现薄膜传感器在硬质合金刀具刀刃区域进行集成制造的方法,解决了难加工材料高速切削过程中刀刃区域温度无法高可靠原位感知难题。(2)提出了基于有限温度测点的非均匀、强时变温度场的快速重构方法,实现了刀具切削区域温度场的在线快速重构。(3)研制了集成表面微织构薄膜热电偶阵列传感器的硬质合金智能刀具,并搭建了强金属干扰环境下薄膜热电偶信号采集及能量无线传输系统。相关实验结果表明,本项目研究成果可实现钛合金等难加工材料高速切削过程中刀具近切削区域温度的高精度跟随测量。本项目发表SCI论文10篇,获国家发明专利授权3项。项目负责人入选教育部“长江学者奖励计划”青年学者,培养毕业博士研究生3人、硕士研究生4人,培养在读博士研究生2人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
物联网中区块链技术的应用与挑战
人工智能技术在矿工不安全行为识别中的融合应用
用于高速切削难加工材料的微叠层复合刀具研究
基于“差分”磨损模型的难加工材料高速切削的三维刀具磨损仿真预测研究
难切削材料深孔加工刀具液力自定心、自导向、自纠偏原理
面向高速切削的难加工材料动态力学性能物理数据研究