The high-speed precision machine tool is the key equipment to realize controllable shape and performance manufacturing of complex precise parts. The machining accuracy of machine tools directly determines the machining accuracy and service performance of the complex precision parts. This project is aimed at the problem that the machining accuracy of the complex precise parts is significantly affected by the thermal error of high-speed precision machine tools under extreme manufacturing conditions and then the new method for thermal error control of high-speed precision machine tools is investigated based on the heat transfer of the gas-liquid two-phase flow. The main research idea of this method is as follows. The gas-liquid two-phase flow heat transfer mechanism of the oscillating heat pipe (OHP) with the binary new-mixed working fluid under complex running conditions is explored based on the governing equations of fluid phase change heat transfer of OHPs with pure fluid. Then the design theory of OHPs is proposed for the thermal error control of high speed precision machine tools and the multi-objective collaborative optimization theory of the critical parameters is proposed to improve the heat transfer performance of OHPs, thus address the difficulty that the thermal error control capability of oscillating heat pipes with binary new-mixed working fluid is insufficient under complex running conditions. Then the closed-loop iterative model of the heat-flow-solid interaction characteristics of machine tools is established to reveal the thermal error control mechanism of machine tools based on the gas-liquid two-phase flow. Finally, the thermal error control of machine tools is realized based on the gas-liquid phase change. The relevant research achievement in this project provides basic theories and solutions for thermal error control of high-speed precision machine tools with independent intellectual property, thus reverse the passive situation that high-speed precision machine tools are subject to foreign technological blockade and price monopoly.
高速精密机床是实现复杂精密零件形性可控制造的关键装备,其加工精度直接决定着复杂精密零件的加工精度和服役性能。本项目针对极端制造条件下,高速精密机床热误差显著影响复杂精密零件加工精度的问题,研究基于气液两相流换热的高速精密机床热误差控制新方法。该方法的研究思路为:基于纯流体振荡热管流动相变传热控制方程,探索复杂运行工况下二元新型混合工质振荡热管气液两相流换热机理;提出面向机床热误差控制的振荡热管设计理论和面向换热性能提升的振荡热管关键参数多目标协同优化理论,重点突破复杂运行工况下二元新型混合工质振荡热管热误差控制能力不足的难题;建立配置有振荡热管的机床热-流-固耦合特性闭环迭代模型,揭示基于气液两相流换热的机床热误差控制机理,进而实现基于气液相变换热的机床热误差控制。本项目研究为拥有自主知识产权的高速精密机床热误差控制提供理论基础和解决方案,扭转高速精密机床受国外技术封锁和垄断的被动局面。
高速精密机床是实现复杂精密零件形性可控制造的关键装备,其加工精度直接决定着复杂精密零件的加工精度和服役性能。本项目针对极端制造条件下,高速精密机床热误差显著影响复杂精密零件加工精度的问题,研究基于气液两相流换热的高速精密机床热误差控制新方法。该方法的研究思路为:基于纯流体振荡热管流动相变传热控制方程,探索复杂运行工况下二元新型混合工质振荡热管气液两相流换热机理;提出面向机床热误差控制的振荡热管设计理论和面向换热性能提升的振荡热管关键参数多目标协同优化理论,重点突破复杂运行工况下二元新型混合工质振荡热管热误差控制能力不足的难题;建立配置有振荡热管的机床热-流-固耦合特性闭环迭代模型,揭示基于气液两相流换热的机床热误差控制机理,进而实现基于气液相变换热的机床热误差控制。本项目研究为拥有自主知识产权的高速精密机床热误差控制提供理论基础和解决方案,扭转高速精密机床受国外技术封锁和垄断的被动局面。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
气固两相流辐射换热研究
精密机床热平衡设计与工作空间热误差智能主动控制关键技术研究
细小通道内非沸腾环状气液两相流流动和换热强化特性
重型数控机床热误差监测与实时补偿新方法研究