Cytochrome c1(CYC1) involved in reactive oxide species(ROS)formation and associated with diabetes. Our preliminary study showed that mutation in inner mitochondrial membrane peptidase 2-like(IMMP2L) increased ROS production and aggravate hyperglycemia cerebral ischemic injury with suppressing substrate CYC1. So we proposed that IMMP2L involved in diabetes-enhanced cerebral ischemic injury by regulating CYC1. The test will employs neuron cell line CYC1-shRNA-HT22, IMMP2L-shRNA-HT22 cells and controls, hyperglycemia and hypoxia in vitro will induced to study the effects of CYC1 expression and mitochondrial complex III function, further to clear effects of CYC1 deficiency and molecular mechanism in hyperglycemia-enhanced neuronal injury. Mutant mice IMMP2L+/- and FVB/N injected with CYC1 overexpression adenovirus before diabetic stroke model to study whether CYC1 overexpession can relief the injury of diabetic brain ischemia. ROS production, mitochondrial function, mitochondrial morphology, mitochondrial dynamic cell death pathways will be evaluated. The aim of all these study is to defined whether IMMP2L deficiency participates in hyperglycemia/diabetes enhanced cerebral ischemic injury by regulating CYC1 and possible molecular mechanism. This study may provide a new avenue for drug development and clinical treatment of stroke and diabetic stroke.
细胞色素C1(CYC1)参与活性氧ROS形成并与糖尿病发生相关。前期发现线粒体内膜肽酶样2(IMMP2L)缺失可增加ROS恶化高血糖脑缺血性损伤并伴随其底物CYC1的抑制,由此提出“IMMP2L通过影响CYC1参与糖尿病加重脑缺血性损伤”的假说。本研究拟综合运用RNAi、免疫分子生物学、线粒体功能、形态学等手段,利用CYC1-shRNA-HT22、IMMP2L-shRNA-HT22神经细胞株及其对照,体外模拟糖尿病脑缺血再灌注明确IMMP2L敲除对CYC1表达和线粒体复合体III功能的影响,并探究CYC1缺失在高血糖加重神经细胞损伤中的效应和分子途径;利用Immp2L+/-基因敲除及其FVB/N野生型小鼠体内注射CYC1过表达体系并建立糖尿病脑中风模型,探讨过表达CYC1的效应,明确IMMP2L是否通过影响CYC1参与糖尿病加重脑缺血性损伤及线粒体机制,为预防和治疗以及药物研发提供新思路。
细胞色素C1(CYC1)参与活性氧ROS形成并与糖尿病发生相关,线粒体内膜肽酶样2(IMMP2L)缺失可增加ROS恶化高血糖脑缺血性损伤并伴随其底物CYC1的抑制,那么IMMP2L是否通过影响CYC1参与糖尿病加重脑缺血性损伤尚不清楚。我们利用CYC1-shRNA-HT22、IMMP2L-shRNA-HT22神经细胞株及其对照,体外模拟糖尿病合并脑中风状态,利用Immp2L+/-基因敲除及其FVB/N野生型小鼠体内建立糖尿病合并脑中风动物模型,同时在体内注射腺病毒CYC1过表达体系,综合运用RNAi、免疫分子生物学、线粒体功能、形态学等手段,探究了IMMP2L是否通过影响CYC1参与糖尿病加重脑缺血性损伤及其线粒体机制以及CYC1缺失在高血糖加重神经细胞损伤中的效应和可能的分子途径。利用不同糖浓度和酸浓度的培养基,缺氧4h,复氧0h、6h、12h培养后,结果发现沉默CYC1基因,神经元生存活力降低,ROS生成增多,高糖状态下CYC1沉默可通过干扰正常线粒体ΔΨm和促进线粒体ROS产生从而加重缺氧后小鼠海马神经元损伤,并可能通过影响线粒体经典凋亡(Cyto C、caspase-3、AIF)通路以及破坏线粒体动态平衡加重神经元损伤;在糖尿病合并大脑中动脉缺血再灌注0h、1h、5h、24h的动物模型中,发现IMMP2L缺陷加重了高血糖脑缺血性损伤,并可能通过影响缺血侧大脑皮质CYC1的表达、降低线粒体复合体III功能、破坏线粒体分裂/融合动态平衡、抑制线粒体自噬来发挥效应;侧脑室注射重组腺相关病毒AAV-CYC1后,过表达CYC1可减轻正常血糖FVB野生型小鼠脑缺血再灌注损伤,并未改善高血糖状态下的脑缺血性损伤。结合体内和体外实验,我们推测,IMMP2L底物CYC1缺失会进一步加重高血糖脑缺血神经细胞损伤,并通过激活线粒体凋亡途径和破坏线粒体动态平衡发挥损伤效应;IMMP2L可通过影响其底物CYC1的表达参与正常血糖脑缺血性损伤,高血糖情况下可能还存在其它效应途径发挥损伤作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
视网膜母细胞瘤的治疗研究进展
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
线粒体内膜肽酶样-2在糖尿病加重脑缺血性损伤中的作用
脑红蛋白与线粒体蛋白VDAC和CYC1相互作用抑制缺氧/缺血损伤所致神经细胞死亡
硒在减缓糖尿病加重脑缺血损伤中的作用及与线粒体分裂/融合关系研究
神经血管单元参与高血糖加重缺血性脑损伤及与解偶联蛋白-2关系研究