Li-air battery possesses an ultra-high energy density, which is 5-10 times that of Li-ion battery. The research development on Li-air battery has a great scientific significance and practical value for the future mass-scale energy storage and development of electrical vehicles. However, the traditionally used carbonaceous cathode is unstable in the Li-air battery. The carbonaceous cathode itself can be decomposed and induce the electrolyte decomposition, leading to poor stability and short cycle life of battery system, which is a bottleneck restricting the development of Li-air battery. To address this challenge, our project will design and fabricate a novel nano-porous metal-based air cathode with bi-continuous structure, which has inherited the high chemical stability of metallic materials and robust catalytic activity of noble metal and its oxides. The problems of poor electrochemical stability of air cathode are fundamentally solved by tailoring its chemical composition, pore structure and morphology. Simultaneously, thanks to the smart design, the mass transfer and ORR/OER activity are enhanced, thus improving the performances of Li-air battery to a great extent. Furthermore, the energy storage mechanism and the ion as well as electron transfer regularity are clarified with the methods of theoretical calculation and computer simulation. In our project, the initially proposed concepts of metal-based air cathode, methods for constructing the in situ interface of microstructure and the energy storage mechanism will provide new guidance and scientific basis for the research regarding Li-air battery.
锂空气电池拥有超高的能量密度(是锂离子电池5-10倍),其研究和开发对未来大规模储能和电动车领域的发展具有重要的科学意义和实用价值。目前传统碳空气正极在锂空气电池中自身会发生分解并诱发电解液分解,导致电池体系的稳定性很差和循环寿命很短,这已成为制约锂空气电池发展的瓶颈。针对这一难题,本项目拟结合金属材料在锂空气电池中的高化学稳定性与贵金属及氧化物的高催化活性的优点,设计和制备新型纳米多孔金属基空气正极体系。通过对其化学组成、孔道结构及形貌的调控,根本上解决锂空气电池空气正极电化学稳定性差的难题,同时增强空气正极的传质和氧还原/氧析出反应能力,进而大幅提高电池的综合性能。进一步通过理论计算与计算机仿真相结合的方法探明金属基空气正极的储能机制及离子和电子输运规律。本项目首次提出金属基复合空气正极的概念、纳微结构的原位界面构筑方法以及储能机制,将为锂空气电池研究提供新的思路和科学依据。
锂空气电池拥有超高的能量密度(是锂离子电池5-10倍),其研究和开发对未来大规模储能和电动车领域的发展具有重要的科学意义和实用价值。目前传统碳空气正极在锂空气电池中自身会发生分解并诱发电解液分解,导致电池体系的稳定性很差和循环寿命很短,这已成为制约锂空气电池发展的瓶颈。针对这一难题,本项目拟结合金属材料在锂空气电池中的高化学稳定性与贵金属及氧化物的高催化活性的优点,设计和制备新型纳米多孔金属基空气正极体系。通过对其化学组成、孔道结构及形貌的调控,根本上解决锂空气电池空气正极电化学稳定性差的难题,同时增强空气正极的传质和氧还原/氧析出反应能力,进而大幅提高电池的综合性能。进一步通过理论计算与计算机仿真相结合的方法探明金属基空气正极的储能机制及离子和电子输运规律。本项目首次提出金属基复合空气正极的概念、纳微结构的原位界面构筑方法以及储能机制,将为锂空气电池研究提供新的思路和科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
基于细粒度词表示的命名实体识别研究
高压工况对天然气滤芯性能影响的实验研究
空气电晕放电发展过程的特征发射光谱分析与放电识别
陶瓷基固态锂空气电池嵌脱锂正极材料的催化及储能复合机制研究
固态锂空气电池三维多孔正极界面构筑及电化学机理研究
锂空气电池正极界面反应机理及其在电池中的应用研究
新型聚合物电解质基固态锂-空气电池复合空气电极构筑研究