The further research of high temperature heat insulation materials with high performance and low cost to realize saving energy and reducing consumption has important practical significance and urgency. Currently, under service process of high temperature different vacuum and micro-nanoporous structure impact on thermal transporting rule is not clear yet,high temperature heat insulation materials with microstructure packed under vacuum, heat insulation mechanism and high temperature service process simulation have not been reported.Therefore, based on the vacuum and microporous composite structure of high temperature insulation material is as the research object of the project, studying The further research of high temperature heat insulation materials with high performance and low cost to realize saving energy and reducing consumption has important practical significance and urgency. Currently, under service process of high temperature different vacuum and micro-nano porous structure impact on thermal transporting rule is not clear yet, high temperature heat insulation materials with microporous powder composite packed under vacuum, heat insulation mechanism and high temperature service process simulation have not been reported. Therefore, based on the vacuum and microporous composite structure of high temperature insulation material which hot face temperature not exceeding 1000℃ is as the research object of the project, studying its composition, structure, the relationship between heat insulation performance and its influencing factors and optimizing preparing technology; Through the kiln lining thermal parameter measurement and laboratory simulation experiment, with the aid of numerical heat transfer and Monte Carlo simulation method, clarifying the mechanism of heat insulation and high temperature service process changing law of new thermal insulation material, setting up service effect and service life analysis model ,implementing main parameters of the numerical simulation and forecast during the whole service process of the high temperature, indicating the direction and the specific path for the development and use of new type high efficient heat insulation material, solving energy saving the key problem widely existing high temperature industry.
深入研究高性价比高温隔热材料,实现节能降耗,具有重要的现实意义和紧迫性。目前高温使役环境中不同真空度和微纳米孔结构对热量传输的影响规律尚不明晰,真空封装/微孔粉体复合的高温隔热材料及其隔热机理、高温使役过程模拟研究均未见报道。因此,本项目以热面温度不超过1000℃可稳定使用的真空封装/微孔粉体复合高温隔热材料为研究对象,系统研究其组成、结构、制备工艺和隔热性能关系及其影响因素;通过窑炉现场内衬热参数实测和实验室模拟验证实验,借助数值传热学和Monte Carlo模拟方法研究高温使役环境中不同真空度和微纳米孔结构对热量传输的影响,阐明该材料的隔热机理和高温使役过程变化规律,建立新型隔热材料使用效果与寿命分析模型,编制隔热耐火材料高温使役Monte Carlo模拟软件,实现其高温使役全过程的主要参数数值模拟和预报,为研发和使用新型高效隔热材料指明方向和具体路径,解决高温工业节能关键共性问题。
目前高温使役环境中不同真空度和微纳米孔结构对热量传输的影响规律尚不明晰,真空封装/微孔粉体复合的高温隔热材料及其隔热机理、高温使役过程模拟研究,影响真空高温隔热材料使用效果与寿命的关键因素有哪些等问题亟待解决。.本项目系统研究了真空封装/微孔粉体复合高温隔热材料组成组成、结构、高温使用性能及其使用损毁变化规律,阐明其高温使役过程变化规律,建立新型隔热材料使用效果与寿命分析模型,编制隔热耐火材料高温使役过程COMSOL Multiphysis 模拟计算程序,实现主要参数模拟、效果分析和寿命预报。.以热面温度不超过 1000℃可稳定使用的真空封装/微孔粉体复合高温隔热材料为研究对象,芯材由微纳米孔结构的低导热粉体(气相SiO2 或无定形相SiO2/Al2O3 超微粉)、高温纤维、遮光剂、吸气剂等混合均匀后压制成型,制将压型好的芯材用高阻隔膜包裹后抽真空进行热压封装,高阻隔薄膜采用耐高温、能保持真空度的气密性薄膜(耐热合金箔、玻璃膜或陶瓷膜)。深入探讨了成型压力、纤维的种类及添加量、高阻隔薄膜的种类、遮光剂的种类及添加量等对SiO2/Al2O3微孔粉体隔热材料性能的影响。.通过大量窑炉现场和实验室电炉模拟实验对该材料使用的参数实测和在线取样,考察真空封装/微孔粉体复合高温隔热材料随时间、随温度动态条件下变化的过程,阐明了真空封装/微孔粉体复合高温隔热材料的隔热机理和高温使役过程变化规律,建立新型隔热材料使用效果与寿命分析模型,编制完善实用的隔热耐火材料高温使役过程 COMSOL Multiphysics模拟计算软件,实现其高温使役全过程的主要参数数值模拟和预报。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于多模态信息特征融合的犯罪预测算法研究
坚果破壳取仁与包装生产线控制系统设计
钢筋混凝土带翼缘剪力墙破坏机理研究
新型超高温隔热材料氧化镁晶体纤维的制备和机理研究
基于无机/有机复合设计的热防护系统柔性隔热材料的构筑及高温损伤机理
超轻多孔陶瓷复合气凝胶隔热材料的微结构控制与隔热机理
耐高温炭气凝胶隔热材料微观结构控制及其固体、辐射传热机理研究