The heterostructures fabricating by two-dimensional atomic crystals including graphene and the like will be very promising candidate materials for the next-generation information technology due to their novel and outstanding properties. And lots of the properties are correlated with their composition, morphology, interfacial characteristics, and so on. Therefore, the controllable epitaxy growth and structure-activity relationship of such materials have been the hot topic in the high-tech frontiers, and need further study. In this project, several techniques for the controllably expitaxy growing two-dimensional heterostructural materials, specially by microwave assisted controllable fabrication methods, will be proposed, and the expitaxy growth mechanisms for different compositions of two-dimensional heterostructures will be elucidated. Through analyzing the relationships between interfacial characteristics, the separation and transportation of carriers, photoelectric conversion ability and so forth, in combination of first principles calculation method, the intrinsic mechanism and physical origin that the changes in electronic structures affect the photoelectric behaviors in heterostructural material systems will be revealed, and several physical models will be established. We believe that, the completion of this project will provide solid experimental data and effective theoretical basis for the development of rapid and high-efficient new-generation photoelectric devices from two-dimensional heterostructural materials.
由二维原子晶体(包括石墨烯、类石墨烯二维结构)相互之间组合形成的异质结构在新一代信息技术领域有潜在应用前景。二维异质结构的诸多性质与组成、形貌、界面等有关,其可控外延生长及构效关系是亟待深入研究的前沿领域。本项目拟研究二维异质结材料的可控外延技术,特别是微波辅助的可控制备技术,阐明不同组份二维结构外延生长的微观机制。分析界面性质、载流子分离和传输、光电转换能力等性质的关联,并结合第一性原理计算方法,揭示异质体系电子结构变化对其光电行为影响的本征机制和物理起源。建立相关物理模型,为快速高效二维异质材料基新型光电器件的研制提供有效的实验和理论依据。
石墨烯、类石墨烯二维材料基异质结构的诸多性质与组成、形貌、界面等密切相关,本项目从实验上研究了基于石墨烯、MX2(M=Mo, W; X=S, Se)等新型二维材料及其异质(或复合)纳米结构的可控制备、结构表征与生长机理;研究了所制备材料的基本物性、构效关系和调控;开展了异质材料的结构设计、物性理论计算和仿真模拟研究;开展了基于所制备材料的光、电学器件应用研究。获得了多种基于新型二维材料(MoS2、WS2、WSe2、MoSe2等)的异质纳米结构材料,包括MoS2@CC、WS2@CC、WSe2@CC、MoS2@NiS、MoS2@Ni2P、MoS2@FeS2等;发展了多种异质结构的可控制备技术,掌握了材料系统的制备工艺参数、形成机制及规律。在材料的物性调控方面,通过组成、形貌两种手段协同作用实现了异质纳米结构光、电物理特性的提升,所制备的材料在催化、储能、光电探测以及传感器等领域具有较大的应用前景。理论方面,从微观上揭示了石墨烯、MoS2等与其他半导体材料形成的异质结构表现出优异光电性能的微观机制,并提出了多种新的二维材料基异质纳米结构的稳定结构模型。相关研究成果在包括Nano Energy, Journal of Materials & Chemistry A, Chemical Science, Carbon、ACS Applied materials & Interfaces等在内的学术期刊上发表SCI论文25篇,其中19篇论文的影响因子大于3;获得授权国家发明专利3项。培养毕业博士研究生4人,其中1人的博士学位论文获得校级优秀博士论文,1人被评为校级优秀毕业生;毕业硕士研究生2人。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
气载放射性碘采样测量方法研究进展
新型二维原子晶体材料的生长及光电器件研究
新型碳基二维原子晶体材料的控制制备、结构表征及应用探索
碳纳米管异质结构的控制制备及其在光电转换器件中的应用
GaN纳米异质外延生长及其在发光器件中的应用