The improvement of energy density has been becoming the persistent pursuit of energetic materials. Based on coordination chemistry leading to the most possible assembly of energetic groups to obtain energetic MOFs, the subject aims to achieve the further improvement of energy density of energetic materials. Due to the structural characteristics of MOFs including high density, good thermal stability and high mechanical strength, the high energy MOFs will be prepared from the designed and synthesized ligand with high energy coordinated to metallic ions, and structurally characterized. Heat of formation of energetic MOFs can be directly obtained by using the intelligent Micro Rotating-Bomb Calorimeter, from which heat of detonation, detonation velocity and detonation pressure could be calculated, and the energetic performance of the MOF-based high energy density materials could be evaluated. Upon sensitivity being experimentally determined, theoretical analysis of sensitivity of energetic MOFs could be performed by quantum chemistry. Combination the experimental results of TG-DTG-DSC-IR and ESI-MS, the mechanism of the thermal decomposition will theoretically analyzed in order to obtain triggering mechanism of the thermal decomposition and the evaluation of thermal stability of energetic MOFs. On basis of the results above, structural factors effecting on energy and sensitivity would be summarized in attempt to obtain the controllable preparation of energetic MOFs with the harmony between energy and sensitivity. Research results would provide theoretical and practical guidance for the rational design of high energy density materials with excellent performance, and the systematic characterization on structure and physicochemical property would be of an important significance for the improvement of detonation performance and the adjustment of sensitivity of energetic MOFs.
致力于能量密度的提高是含能材料不懈的追求。本选题以配位为导向,基于能量基团的最大可能聚集获得能量MOFs,实现含能材料能量密度的再提高。缘于MOFs材料高密度、良好的稳定性和高机械强度等结构特性,通过高能配体的设计与合成,进而与金属离子配位制备MOF基高能量密度材料,进行结构表征。利用智能化微量转动弹热量计,获取能量MOFs的生成热,继而估算爆热、爆压、爆速,进行能量评价。实验测定感度,运用量子化学计算建立能量MOFs感度的理论分析;结合TG-DTG-DSC-IR及ESI-MS实验结果,进行理论热解机理探析,以期获得能量MOFs热解引发机理和稳定性评价。综合上述结论,归纳总结影响能量和感度的结构因素,以期获得能量与感度统一的能量MOFs的制备调控机制。研究结果将为合理设计性能卓越的高能量密度材料提供理论和实践借鉴,系统的结构及理化性质表征对含能MOFs爆炸性能的提升及感度调节具有重要意义。
致力于能量密度的提高是含能材料不懈的追求。本选题以配位为导向,基于能量基团的最大可能聚集获得能量MOFs,实现含能材料能量密度的再提高。研究设计合成了16种热稳定性较好的三/四唑类高能配体,与金属离子配位得到了63例MOF基高能量密度材料,并对其进行了较为全面的结构和理化性质表征。利用智能化微量转动弹热量计精确测定了能量MOFs的生成热,建立了一套完整规范的能量MOFs燃烧热经验测定方法。开展系统的能量与安全性评价,建立了结构与能量特性、感度的有效关联,筛选出15例能量与感度俱佳的MOF基高能量密度材料。研究表明,高氮含量及无溶剂结构有利于提高能量密度,能量MOFs爆压值与体系N%基本呈正相关,硝基离去引发键强度和可逆氢转移是提升材料稳定性、降低感度的关键。研究结果将为合理设计性能卓越的高能量密度材料提供理论和实践借鉴,系统的结构及理化性质表征对含能MOFs爆炸性能的提升及感度调节具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
物联网中区块链技术的应用与挑战
当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响
长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展
高能量密度材料的分子设计
高能量密度镁电池正极材料的研究
高能量密度材料(HEDM)制备与性能
锂离子电池高能量密度正极材料的界面特性研究与调控